EVALUATION OF BIOSURFACTANT PRODUCING AND ANTIMICROBIAL RESISTANCE PSEUDOMONAS FOR HEAVY METALS TOLERANCE

Authors

DOI:

https://doi.org/10.36103/ijas.v55iSpecial.1885

Keywords:

Pseudomonas spp., emulsification, antibiotics, pollution, rhizosphere.

Abstract

This study aimed to evaluate biosurfactant production and antibiotic resistance in Pseudomonas bacteria isolated from some agricultural fields to detect the relationship of these isolates traits with some heavy metals resistance. Bacterial isolates were screened for biosurfactant production through blood hemolysis, oil spreading, emulsification activity, and surface tension. The antibiotic sensitivity was determined using disk diffusion method. Then, identification of the selected isolates and subjected to gradient concentrations of heavy metals to determine the minimum inhibitory concentration (MIC). Biosurfactant production was found in 74.29% of these isolates. The isolates resistance to Ticarcillin-clavulanate, Aztreonam, Piperacillin, and Imipenem were 92.86%, 31.43%, 2.86% and 1.43%, respectively. The eight selected isolates were identified by biochemical tests and VITEK 2 system as P. aeruginosa. The resistance of these isolates to heavy metals differed significantly. The isolate B49 recorded the highest resistance to Cu (MIC=3200 µg/ml) and Zn (MIC=2600 µg/ml), while the isolate B66 recorded the highest resistance to Cd (MIC=1000 µg/ml) and isolate B25 had higher resistance to Hg (MIC=80 µg/ml), and Pb (MIC=2800 µg/ml). The correlation coefficient between emulsification (E24%) and CdCl2 (r=0.27) and Pb (r=0.38) was significant positive, while E24% had a significant negative correlation with Zn (r= -0.63) and non-significant correlation to copper (r=0.02) and mercury (r=0.19) resistance.

References

Adejumo, S. A., A. N. Oli, E. I. Okoye, C. D. Nwakile, C. M. Ojiako, U. M. Okezie, I. J. Okeke, C. M. Ofomata, A. A. Attama, J. N. Okoyeh and C. O. Esimone. 2021. Biosurfactant production using mutant strains of Pseudomonas aeruginosa and Bacillus subtilis from agro-industrial wastes. Advanced Pharmaceutical Bulletin, 11(3): 543-556.

Adekanmbi, A. O., O. O. Adelowo, Okoh, A. I., and O. E. Fagade. 2019. Metal-resistance encoding gene-fingerprints in some bacteria isolated from wastewaters of selected printeries in Ibadan, South-western Nigeria. Journal of Taibah University for Science, 13(1): 266-273

Al-Charrakh, A. H., and R. M. Al-Enzi. 2014. Resistance of Pseudomonas aeruginosa From Clinical and Environmental Sources to Heavy Metals in Hilla City, Iraq. Science Journal of University of Zakho, 2(1): 107–115.

Al-Salmany, S. W. K., and I. A. Ibrahim. 2021. Phytoextraction of cadmium and lead from a contaminated soil using Eucalyptus seedings. Iraqi Journal of Agricultural Sciences, 52(4): 810–827. https://doi.org/10.36103/ijas.v52i4.1390

Anaukwu, C. G., C. M. Ogbukagu and I. A. Ekwealor. 2020. Optimized Biosurfactant Production by Pseudomonas aeruginosa Strain CGA1 Using Agro-Industrial Waste as Sole Carbon Source. Advances in Microbiology, 10(10): 543–562

Bendaha, M. A., B. Meddah, H. Belaouni, A., M. Mokhtar and A.Tirtouil. 2016. Removal of zinc and cadmium ions from contaminated soils with rhamnolipid biosurfactant produced by Pseudomonas aeruginosa S7ps5. Journal of Fundamental and Applied Sciences, 8(3): 1146-1165

Camiade, M., J. Bodilis, N. Chaftar, W. Riah-Anglet, J. Gardères, S. Buquet, A. F. Ribeiro and B. Pawlak. 2020. Antibiotic resistance patterns of Pseudomonas spp. isolated from faecal wastes in the environment and contaminated surface water. FEMS Microbiology Ecology, 96(2).

Chakraborty, J. and S. Das. 2014. Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environmental Science and Pollution Research, 21(24): 14188-14201

Clinical and Laboratory Standards Institute. 2020. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100

Das, A. J. and R. Kumar. 2016. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria. Journal of Environmental Management, 174, 79-86

Estepa, V., B. Rojo-Bezares, C. Torres, and Y. Sáenz. 2015. Genetic lineages and antimicrobial resistance in Pseudomonas spp. isolates recovered from food samples. Foodborne Pathogens and Disease, 12(6): 486-491

Faqri, A. M. A., N. H. Hayder and A. J. Hashim. 2019. Induction of rhamnolipid production by Pseudomonas aeruginosa A3 using chemical and physical mutagenic factors. Iraqi Journal of Agricultural Sciences, 50(4): 1174-1185. ‏ https://doi.org/10.36103/ijas.v50i4.766

Faqri, A. A. and N. H. Hayder A. J. 2019 Lab-Scale production of Rhamnolipid by Pseudomonas aeruginosa A3 and study its synergistic effect with certain antibiotic againts some pathogenic bacteria , Iraqi Journal of Agricultural Sciences, 50(5) :1290-1301. https://doi.org/10.36103/ijas.v50i5.794

Ferjani, R., H. Gharsa, V. Estepa-Pérez, E. Gómez-Sanz, M. Cherni, M. Mahjoubi, A. Boudabous, C. Torres, and H.I. Ouzari, 2019. Plant growth-promoting Rhizopseudomonas: expanded biotechnological purposes and antimicrobial resistance concern. Annals of Microbiology, 69(1): 51-59.

Ghaima, K. K., A. I. Mohamed, W. Y. Al Meshhdany and A. A. Abdulhassan. 2017. Resistance and bioadsorption of cadmium by Pseudomonas aeruginosa isolated from agricultural soil. International Journal of Applied Environmental Sciences, 12(9): 1649-1660

Guo, Y., T. Qiu, M. Gao, Y. Sun, S. Cheng, H. Gao and X. Wang. 2021. Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: Focusing on the effect of the vegetable species. Journal of Hazardous Materials, 415-125595.

Holt, J.C. ; N.R. Krieg, 1984 .Bergeys’ Manual of Systemic Bacteriology .4th (ed). William and Willkins, Baltimor. London. 9: 40-97

Hentati, D., A. Chebbi, F. Hadrich, I. Frikha, F. Rabanal, S. Sayadi, A. Manresa, and M. Chamkha. 2019. Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicology and Environmental Safety, 167: 441-449.

Imron, M. F., S. B. Kurniawan and S. R. S. Abdullah. 2021. Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustainable Environment Research, 31(1): 1-13

Jameel, A. A., and N. H. Haider. 2021. Determination of the optimum condition for biosurfactant production by local isolate of Lactobacillus plantarum and evaluate its antibacterial activity. Iraqi Journal of Agricultural Sciences, 52(1): 170-188. https://doi.org/10.36103/ijas.v52i1.1249

Jameel, A. A., and N. H. Haider. 2021. Study the antimicrobial and antiadhesive activity of purified biosurfactant produced from from Lactobacillus plantarum against pathogenic bacteria. Iraqi Journal of Agricultural Sciences, 52(5):1194–1206. https://doi.org/10.36103/ijas.v52i5.1457

Khdair, S. R., Hassan, A. M., Wahab, H. M. A. and N. N. Mahmood. 2017. Detection of blaCTX-M gene among Pseudomonas aeruginosa isolated from water samples in Baghdad. Al-Mustansiriyah Journal of Science, 28(1): 35-40

Kadhum, M. KH., and N. H. Haydar. 2020. Production and characterization of biosurfactant (Glycolipid) from Lactobacillus helviticus M5 and evaluateits antimicrobial and antiadhesive acvtivity. Iraqi Journal of Agricultural Sciences, 51(6):1543–1558. https://doi.org/10.36103/ijas.v51i6.1182

Lal, S., S. Ratna, O. B. Said and R. Kumar (2018). Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology. Environmental Technology & Innovation, 10: 243-263

Luczkiewicz, A., E. Kotlarska, W. Artichowicz, K. Tarasewicz and S. Fudala-Ksiazek. 2015. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone. Environmental Science and Pollution Research, 22(24): 19823-19834

Lopushniak, V. I. and H. M. Hrytsuliak. 2021. The Intensity of the Heavy Metals by Topinambur in the Conditions of the Oil-Polluted Areas. Iraqi Journal of Agricultural

Sciences, 52(6): 1334–1345. doi: 10.36103/ijas.v52i6.1473. https://doi.org/10.36103/ijas.v52i6.1473

Nath, S., B. Deb, I. Sharma and P. Pandey. 2014. Role of cadmium and lead tolerant Pseudomonas aeruginosa in seedling germination of rice (Oryza sativa L.). Journal of Environmental and Analytical Toxicology, 4(4): 1

Oluwaseun, A. C., O. J. Kola, P. Mishra, Singh, J. R., A. K. Singh, S. S. Cameotra, and B. O. Micheal. 2017. Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501 with novel biosurfactant activities. Sustainable Chemistry and Pharmacy, 6: 26-36

Panjiar, N., S. G. Sachan, and A. Sachan. 2017. Biosurfactant Production by Pseudomonas fluorescens NCIM 2100 Forming Stable Oil-in-Water Emulsions. In Applications of Biotechnology for Sustainable Development pp: 97-107

Patowary, K., M. Das, R. Patowary, M. C. Kalita, and S. Deka. 2019. Recycling of bakery waste as an alternative carbon source for rhamnolipid biosurfactant production. Journal of Surfactants and Detergents, 22(2): 373-384

Persson, A., E. Oesterberg and M. Dostalek. 1988. Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Applied Microbiology and Biotechnology, 29(1):1-4

Pitondo‐Silva, A., G. B. Gonçalves and E. G. Stehling. 2016. Heavy metal resistance and virulence profile in Pseudomonas aeruginosa isolated from Brazilian soils. Apmis, 124(8): 681-688

Poole, K. 2017. At the nexus of antibiotics and metals: the impact of Cu and Zn on antibiotic activity and resistance. Trends in Microbiology, 25(10): 820-832

Rizzo, C., L. Michaud, M. Graziano, E. De Domenico, C. Syldatk, R. Hausmann and A. Lo Giudice. 2015. Biosurfactant activity, heavy metal tolerance and characterization of Joostella strain A8 from the Mediterranean polychaete Megalomma claparedei (Gravier, 1906). Ecotoxicology, 24(6): 1294-1304

Rasheed, H. G., and N. H. Haydar. 2023. Purification, characterization and evaluation of biological activity of Mannoprotein produced from Saccharomyces cerevisiae BY. Iraqi Journal of Agricultural Sciences, 54(2): 347-359. https://doi.org/10.36103/ijas.v54i2.1709 doi:10.36103/ijas.v54i2.1709.

Sanjivkumar, M., M. Deivakumari, and G. Immanuel. 2021. Investigation on spectral and biomedical characterization of rhamnolipid from a marine associated bacterium Pseudomonas aeruginosa (DKB1). Archives of Microbiology, 1-18

SAS. 2012. Statistical Analysis System, User's Guide. Statistical. Version 9.1th ed. SAS. Inst. Inc. Cary. N.C. USA

Sun, S., Y. Wang, T. Zang, J. Wei, H. Wu, C. Wei, G. Qiu, and F. Li. 2019. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresource Technology, 281: 421-428

Sun, W., B. Zhu, F. Yang, M. Dai, S. Sehar, C. Peng, I. Ali and I. Naz. 2021. Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. In Chemosphere, 265, 129090.‏

Verma, S., R. Prasanna, J. Saxena, V. Sharma, and L. Nain. 2012. Deciphering the metabolic capabilities of a lipase producing Pseudomonas aeruginosa SL-72 strain. Folia Microbiologica, 57(6): 525-531

Wu, T., J. Xu, W. Xie, Z. Yao, H. Yang, C. Sun, and X. Li. 2018. Pseudomonas aeruginosa L10: a hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Frontiers in Microbiology, 9, 1087

Zouari, I., F. Masmoudi, K. Medhioub, S. Tounsi, and M. Trigui. 2020. Biocontrol and plant growth-promoting potentiality of bacteria isolated from compost extract. Antonie Van Leeuwenhoek, 113(12): 2107-2122

Zouari, O., D. Lecouturier, A. Rochex, G. Chataigne, P. Dhulster, P. Jacques and Ghribi, D. 2019. Bio-emulsifying and biodegradation activities of syringafactin producing Pseudomonas spp. strains isolated from oil contaminated soils. Biodegradation, 30(4): 259-272.

Downloads

Published

2024-01-25

How to Cite

Al-Sajad M. S., & H. A. A. Alsalim. (2024). EVALUATION OF BIOSURFACTANT PRODUCING AND ANTIMICROBIAL RESISTANCE PSEUDOMONAS FOR HEAVY METALS TOLERANCE . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 55(Special), 52-62. https://doi.org/10.36103/ijas.v55iSpecial.1885

Similar Articles

41-50 of 145

You may also start an advanced similarity search for this article.