EVALUATION THE ABILITY OF TITANUM OXIDE NANOPARTICLES TO INCREASE THE PRODUCTION OF PRODIGIOSIN AND PHENASINE FROM Serratia marcescens AND Pseudomonas aeruginosa RESPECTIVELY

Authors

  • L. A. Yaaqoob
  • R. M. Abed
  • Z. K. Kamona
  • M. F. Altaee

DOI:

https://doi.org/10.36103/ijas.v53i3.1557

Keywords:

TiO2 NPs, P. aeruginosa, S. marcescens, growth inhibition, antibacterial.

Abstract

The present study was aimed to investigate the possibility of titanium oxide nanoparticles to enhance the production of both prodigiosin by Serratia marcescens and phenazine by Pseudomonas aeruginosa. Moreover; the poor non-selective nutrient broth was used instead of using the selective nutrient broth for the production of both compounds to reduce the economic cost for production. Different concentrations of titanium oxide nanoparticles (0.005, 0.01, 0.015 mg/L) were used in this study to choose the most suitable concentrations to increase production. Both prodigiosin and phenazine were considered promising drugs for treating many diseases owing to their characteristics of antibacterial, antifungal, immunosuppressive, and anticancer activities. The results revealed that both the prodigiosin and phenazine production was increased from S. marcescens and Pseudomonas aeruginosa when using titanium oxide nanoparticles at (0.01 mg/L) concentration and the size of an average diameter was 57.07 nm.

References

Ali, H. I.; H. A. Salih and H. A. Al-jezani. 2019. Preservative study of the AgNPs effect on the materials and embryonic development in albino rats. Iraqi Journal of Agricultural Sciences. 50(6): 1605-1612

Aminov, R. I. 2009. The role of antibiotics and antibiotic resistance in nature. Environmental microbiology. 11(12): 2970-2988

Anajwala, C.; G. Jani and S. Vijayendra. 2010. Current Trend of Nanotechnology for Cancer Therapy. International Journal of Pharmaceutical Science and Nanotechnology. 3: 1043-1054

Ann, D. 2004. Development of Nanotechnologies. Materials Today. 7: 30-36

Archana, M. C.; Pratima, M. Amita and K. Abhay. 2012. Functionalization of TiO2 with plant extracts and their combined Antimicrobial Activities against E. faecalis and E. coli. Journal of Research Updates in Polymer Science. 1(1): 43-51

Atwan, Q. S. and N. H. Hayder. 2020. Eco-friendly synthesis of silver nanoparticles by using green method: improved interaction and application in vitro and in vivo. Iraqi Journal of Agricultural Sciences. 15:201-216

Bennett, J. W. and R. Bentley .2000. Seeing red: the story of prodigiosin. Advances in Applied Microbiology. 47: 1-32

Benson, H. J. 2002. Microbiological Applications 8th ed. McGraw Hill 254-257

Bérdy, J. 2012. Thoughts and facts about antibiotics: where we are now and where we are heading. The Journal of Antibiotics. 65(8): 385-395

Boger, D. L. and M. Patel. 1988. Total synthesis of prodigiosin, prodigiosene, and desmethoxy prodigiosin: Diels-Alder reactions of heterocyclic azadienes and development of an effective palladium (II) promoted 2, 2'-bipyrrole coupling procedure. The Journal of Organic Chemistry. 53(7): 1405-1415.

Borić, M.; T. Danevčič, and D. Stopar. 2011. Prodigiosin from Vibrio sp. DSM 14379; a new UV-protective pigment. Microbial Ecology. 62(3): 528-536.

Campas, C.; M. Dalmau, B. Montaner; M. Barragan; B. Bellosillo and D. Colomer. 2003. Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia. 17(4): 746-750

Catauro, M.; M. Raucci; F. De Gaetano and A. Marotta. 2004. Antibacterial and bioactive silver-containing Na2O-CaO-2SiO2 glass prepared by sol-gel method. J Mater Sci Mater Med.15: 831-848

Choi, O. K.; Deng, N. Kim; L. Ross; Y. Rao and Z. Hu. 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Research. 42: 3066–3074

Demain, A. L. and J. L. Adrio. 2008. Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation Natural Compounds as Drugs Volume I., Springer., 251-289

Dietrich L. E.; A. Price-Whelan; A. Petersen; M. Whiteley and D. K. Newman. 2006. The phenazine pyocyanin is a terminal signaling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61: 1308–1321

Duan, K.; C. Dammel; J. Stein; H. Rabin and M. G. Surette .2003. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular Microbiology. 50(5): 1477-1491

Elahian, F.; B. Moghimi; F. Dinmohammadi; M. Ghamghami; M. Hamidi and S. A. Mirzaei. 2013. The anticancer agent prodigiosin is not a multidrug resistance protein substrate. DNA and Cell Biology 32(3):90-97

Fender, J. E.; C. M. Bender; N. A. Stella; R. M. Lahr; E. J. Kalivoda and R. M. Shanks. 2012. Serratia marcescens quinoprotein glucose dehydrogenase activity mediates medium acidification and inhibition of prodigiosin production by glucose. Applied and Environmental Microbiology. 78(17): 6225-6235

Gleiter, H. 2000. Nanostructured Materials: Basic Concepts and Microstructure. Acta Materialia. 48: 1–12

Glupczynski, Y.; C. Berhin; C. Bauraing and P. Bogaerts. 2007. Evaluation of a new selective chromogenic agar medium for detection of extended-spectrum ОІ-lactamase-producing Enterobacteriaceae. Journal of Clinical Microbiology. 45(2): 501-505

Grimont, P. A. D. and F. Grimont 1978. The genus Serratia. Annual Reviews in Microbiology. 32(1): 221-248

Hamdali, H.; M. Hafidi; M. J. l. Virolle and Y. Ouhdouch. 2008. Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World Journal of Microbiology and Biotechnology 24(11): 2565-2575

Hassan, A. S. and M. T. Al-Kateeb. 2017. Biological pre-treatment uses local wild stain of lipolytic filamentous bacteria to improve in vitro dry matter digestibility and reduction lignin content of low-quality roughages. Iraqi Journal of Agricultural Sciences. 48: 6-11

Iguchi, A.; Y. Nagaya; E. Pradel, T. Ooka; Y. Ogura and K. Katsura 2014. Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen. Genome biology and evolution, 6(8), 2096-2110

Kim, D.; J. F. Kim; J. H. Yim; S. K. Kwon; C. H. Lee and H. K. Lee. 2008. Red to red-the marine bacterium Hahella chejuensis and its product prodigiosin for mitigation of harmful algal blooms. Journal of microbiology and biotechnology. 18(10): 1621-1629

Mahlen, S. D. 2011. Serratia infections: from military experiments to current practice. Clinical Microbiology Reviews. 24(4): 755-791

Maplestone, R. A., M. J. Stone, and D. H. Williams 1992. The evolutionary role of secondary metabolites. Gene. 115(1): 151-157

Montaner, B. and R. Prez-Toms .2003. The prodigiosin: a new family of anticancer drugs. Current cancer drug targets. 3(1): 57-65

Pierson L. S. and E. A. Pierson .2010. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Applied Microbiology Biotechnology.86:1659–1670

Singh, O. and R. Nehru. 2008. Nanotechnology and Cancer Treatment. Asian Journal of Experimental Sciences. 22: 45-50

Sungkaworn, T; W. Triampo; P. Nalakarn; D. Triampo; I. Tang, M. Lenbury and P. Picha. 2007. The effects of TiO2 nanoparticles on tumor cell colonies: Fractal dimension and morphological properties. International Journal of Biological and Medical Sciences. 2(1): 67-74

Shivaraju. H. P.; K. Byrappa; T. M. S. Vijay Kumar and C. Ranganathaiah. 2010. Synthesis and Characterization of TiO2 Nano-structures on the Ceramic Support and their Photo-catalysis Performance, Bulletin of the Catalysis Society of India. 9, 37-45

Vijayalakshmi, R. and V. Rajendran. 2012. Synthesis and characterization of nano TiO2 via different methods. Arch. Appl. Sci. Res. 4(2), 1183-1190

Williamson, N. R.; P. C. Fineran; T. Gristwood; S. R. Chawrai; F. J. Leeper and G. P. Salmond. 2007. Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiology. 2(6): 605-18

Yasuaki Kitamura; Noriyuki Okinaka; Tamaki Shibayama; Orlando Omar Prieto Mahaney; Daisuke Kusano; Bunsho Ohtani and Tomohiro Akiyama. 2007. Combustion synthesis of TiO2 nanoparticles as photocatalyst, Powder Technology, 176-93

Yaaqoob, L. A. and M. R.; Hamza, 2020. Evaluation the effect of green synthesis titanium dioxide nanoparticles on Acinetobacter baumannii isolates. IRAQI Journal of Agricultural Sciences., 51(6), 1486-1495.

Downloads

Published

2022-06-29

Issue

Section

Articles

How to Cite

Yaaqoob, L. A. ., Abed, R. . M. ., Kamona, Z. K. ., & Altaee, M. F. (2022). EVALUATION THE ABILITY OF TITANUM OXIDE NANOPARTICLES TO INCREASE THE PRODUCTION OF PRODIGIOSIN AND PHENASINE FROM Serratia marcescens AND Pseudomonas aeruginosa RESPECTIVELY. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 53(3), 496-504. https://doi.org/10.36103/ijas.v53i3.1557

Similar Articles

1-10 of 465

You may also start an advanced similarity search for this article.