UNRAVELING PROLONGED IRRIGATION INTERVALS AND SOME SUSTAINABLE TREATMENTS ON POTATO STARCH COMPOSITION, GROWTH, AND PRODUCTIVITY IN IRAQ

Authors

  • K. D. H. Al-jubouri
  • I. J. Abdul Rasool
  • Aseel M.H. H. Al-Khafaji
  • A. J. Abdulsada
  • F. Y. Baktash
  • W. H. Hasoon
  • Z. J. Al-Mousawi

DOI:

https://doi.org/10.36103/s9q1w418

Keywords:

amylose/amylopectin; responsible consumption and production; mannitol; climate action, biofertilizers, xanthan gum

Abstract

The study aimed to reveal the effect of some sustainable treatments under prolonged irrigation intervals on potato plant growth, yield, and starch properties .The experiment carried out at vegetable field of the College of Agricultural Engineering Sciences - University of Baghdad during spring season 2023. The experiment was conducted using split arrangement within Randomized Complete Block Design with two factors and three replicates (2X6X3). Applying TiO2-NPs represented the first factor (main plot) (10 mg.L-1), which symbolized (T0, T1). six treatments were included to represent subplots (regular irrigation interval (I) prolonged irrigation interval (D), fungal biofertilizers (DB), fungal biofertilizers + mannitol (DBM), fungal biofertilizers +xanthan (DBZ), fungal biofertilizers + mannitol+ xanthan (DBMZ). Results exhibited the superiority plants that grew under prolonged irrigation periods in amylose percent over regular irrigated plants. In contrast, amylopectin exhibits the opposite behavior. i.e., plant that grew under regular water conditions revealed superiority in amylopectin percent, and that for sole treatments and interactions.

References

1. A . O . A . C , 1980 . Official Methods of Analysis Association of Official Analytical Chemists, 13th ed, Washington .USA. pp: 666.

2. Abeysundara A, S. Navaratne, I. Wickramasinghe, and D. Ekanayake. 2015. Determination of changes of amylose and amylopectin content of paddy during early Storage. Inter J Sci Res. 6:2094-2097.

3. Aghdam, M. T. B., H. Mohammadi, , and M. Ghorbanpour. 2016. Effects of anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Brazilian Journal of Botany, 39, 139-146. https://doi.org/10.1007/s40415-015-0227-x

4.Aldolaimy, O. M. S., H. A. Abdul- Ratha, and B. K. Abduljabar. 2024. Effect of bio-organic and mineral fertilization, on the growth and yield of cauliflower (Brassica oleraceae var.botrytis). Iraqi Journal of Agricultural Sciences –55(5):1667-1675. https://doi.org/10.36103/pt592r56

5.Ali, F., A. Bano, and A. Fazal. 2017. Recent methods of drought stress tolerance in plants. Plant Growth Regulation, 82, 363-375. https://doi.org/10.1007/s10725-017-0267-2

6.Al-Khafaji, A. M. H. H., and K. D. H. Al-jubouri. 2024. Individual and interactive utility of biological and physical invigoration for various carrots seeds orders and study their field performance. Iraqi Journal of Agricultural Sciences, 55(4) :1566-1573. https://doi.org/10.36103/66873c67

7.Al-Khafaji, A. M.H. H., K. D. H. Al-jubouri, F. Y. Baktash, I. J. Abdul Rasool, and Z. J. Al-Mousawi. 2024. Amelioration potato plant performance under drought conditions in Iraq by using titanium dioxide, and biodegrading, biodegradable treatments. Iraqi Journal of Agricultural Sciences, 55(6), 1885-1893. https://doi.org/10.36103/03fway21

8.Al-Mashhadany, A.H. and M. Z. K. Al-Mharib. Effect of fertilizers starter solutions on growth and production of broccoli (Brassica oleracea var. italica). Research on Crops, 24(1): 119–122. DOI: 10.31830/2348-7542.2023.ROC-11155

9.Al-Rubaie; A. H. S. and K. D. H. Al-Jubouri. 2023. Effect of tocopherol, trehalose and soil improvement in water productivity and industrial potatoes under water stress. Iraqi Journal of Agricultural Sciences, 54(4):979-995. https://doi.org/10.36103/ijas.v54i4.1787

10.Asoegwu, C. R., C. G. Awuchi, K. C. T. Nelson, C. G. Orji, O. U. Nwosu, U. C. Egbufor, and C. G. Awuchi. 2020. A review on the role of biofertilizers in reducing soil pollution and increasing soil nutrients. Himalayan Journal of Agriculture, 1(1), 34-38. DOI : 10.47310/hja.2020.v01i01.006

11.Baqir, H. A., M.F.H. AL-hassan, and J. W. Mahmood. 2024. Role of bio health extract on wheat growth according to Zadoks decimal scale. Res. Crop. 25 (4): 547-552 DOI: 10.31830/2348-7542.2024.ROC-1130

12.Bassaganya-Riera, J, E. M. Berry, E E. Blaak, B Burlingame, J. Le Coutre, W. V Eden, A. El-Sohemy et al. 2021. Goals In Nutrition Science 2020-2025. Frontiers in nutrition, 7, 606378. https://doi.org/10.3389/fnut.2020.606378

13.Berninger, T, N. Dietz1 and O.G. Lopez. 2021. Water-soluble polymers in agriculture: xanthan gum as eco-friendly alternative to synthetics. Microbial Biotechnology, 14, 1881–1896.

https://doi.org/10.1111/1751-7915.13867

14.Blennow, A, K Skryhan, V Tanackovic, S L. Krunic, Sh. S. Shaik, M. S. Andersen, H Kirk, and K L. Nielsen. 2020. Non‐GMO potato lines, synthesizing increased amylose and resistant starch, are mainly deficient in isoamylase debranching enzyme. Plant Biotechnology Journal, 18(10), 2096-2108. https://doi.org/10.1111/pbi.13367

15.Bolotova, Y. V. 2017. Recent price developments in the United States potato industry. American Journal of Potato Research, 94, 567-571. https://doi.org/10.1007/s12230-017-9590-4

16.Black, C. A. 1965. Methods of Soil Analysis. Am. Soc. Agron. No. 9 Part 1. Madison, Wisconsin. USA. pp. 390.

17.Chaurasia, Sh., R. K. Pati, S. S. Padhi, J. MK Jensen, and N. Gavirneni. 2022. Achieving the United Nations Sustainable Development Goals‐2030 through the nutraceutical industry: A review of managerial research and the role of operations management. Decision Sciences, 53(4), 630-645. https://doi.org/10.1111/deci.12515

18.Daler, Selda, O. Kaya, N. Korkmaz, T. Kılıç, A. Karadağ, and H. Hatterman-Valenti. 2024. Titanium Nanoparticles (TiO2-NPs) as Catalysts for Enhancing Drought Tolerance in Grapevine Saplings. Horticulturae, 10(10), 1103. https://doi.org/10.3390/horticulturae10101103

19.Davey, M., W.M.V. D. Montagu. Inze, M. Sanmartin, A. N. Kanellis, I.J.J Smirnoff. J. J. Benzie. D. Strain. F. Favell, and J. Fletcher. 2000. Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 80: 825–860.

20.Dheyab S., N., A M.H. H. Al-Khafaji, I. J. Abdul Rasool, K. D. H. Al-jubouri, F. Y. Baktash, Z. J. Al-Mousawi, and D. A. Hanoon. 2025. Reducing water consumption and improving soil, root quality of potato via environmentally sustainable treatments. Iraqi Journal of Agricultural Sciences, 55(special):1-9. https://doi.org/10.36103/przef771

21.Dupuis, J. H., and Liu, Q. 2019. Potato starch: a review of physicochemical, functional and nutritional properties. American Journal of Potato Research, 96(2), 127-138. https://doi.org/10.1007/s12230-018-09696-2

22.Ek, K. L., S. Wang, J Brand-Miller, and L Copeland. Properties of starch from potatoes differing in glycemic index. Food & Function, 5(10), 2509-2515. https://doi.org/10.1039/C4FO00354C

23.Farahi, S. M. M., M. E. T. Yazdi, E. Einafshar, M. Akhondi, M. Ebadi, S. Azimipour, H. Mahmoodzadeh, and A. Iranbakhsh. 2023. The effects of titanium dioxide (TiO2) nanoparticles on physiological, biochemical, and antioxidant properties of Vitex plant (Vitex agnus-Castus L). Heliyon, 9(11). doi: 10.1016/j.heliyon

24.Javan, M., A. Ameri, Y. Selahvarzi, and P. S. Amin. 2024. TiO2 NPs as a Promising Strategy for Crop Conservation Resulting from Deficit Irrigation in Fragaria× ananassa Cv. Camarosa. Communications in Soil Science and Plant Analysis, 1-17. https://doi.org/10.1080/00103624.2024.2405980

25.Karvar, M., A. Azari, A. Rahimi, S. Maddah-Hosseini, and M. J. A. Lahijani. 2022. Titanium dioxide nanoparticles (TiO2-NPs) enhance drought tolerance and grain yield of sweet corn (Zea mays L.) under deficit irrigation regimes. Acta Physiologiae Plantarum, 44(2), 14. https://doi.org/10.1007/s11738-021-03349-4

26.Khosravifar, S., F. Farahvash, N. Aliasgharzad, M. Yarnia, and F. R. Khoei. 2020. Effects of different irrigation regimes and two arbuscular mycorrhizal fungi on some physiological characteristics and yield of potato under field conditions. Journal of Plant Nutrition, 43(13), 2067-2079. https://doi.org/10.1080/01904167.2020.1758133

27.Liao, Z, H. Boubakri, B. Chen, M. Farooq, Z. Lai, H. Kou, and J. Fan. 2025. Biofertilizers as an eco-friendly approach to combat drought stress in plants. Biocatalysis and Agricultural Biotechnology, 103510. https://doi.org/10.1016/j.bcab.2025.103510

28.Lynch, D. R., Q. Liu, T. R. Tarn, B. Bizimungu, Q. Chen, P. Harris, C. L. Chik, and N. M. Skjodt. 2007. Glycemie index—a review and implications for the potato industry. American Journal of Potato Research, 84, 179-190. https://doi.org/10.1007/BF02987141

29.Mahdy, A, N. O Fathi, M M Kandil, and A. E Elnamas. 2012. Synergistic effects of biofertilizers and antioxidants on growth and nutrients content of corn under salinity and water-deficit stresses. Alexandria Science Exchange Journal, 33(October-December), 292-304. http://10.21608/asejaiqjsae.2012.3167

30.Mohajjel S., H. L. Ahmadi, M. Kolahi, and E. M Kazemi. 2021. Effect of TiO 2 NPs on the growth, anatomic features and biochemistry parameters of Baby sun rose (Aptenia cordifolia). Physiology and Molecular Biology of Plants, 27, 2071-2081. doi: 10.1007/s12298-021-01050-x

31.Mohammadi, H., M. Esmailpour, and A. Gheranpaye. 2016. Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta Agriculturae Slovenica, 107(2), 385-396. http://dx.doi.org/10.14720/aas.2016.107.2.11.

32.Mukherjee, A., Sh. Dwivedi, L. Bhagavatula, and S. Datta. 2023. integration of light and ABA signaling pathways to combat drought stress in plants. Plant Cell Reports, 42(5), 829-841. https://doi.org/10.1007/s00299-023-02999-7

33.Munyaneza, J. E. 2015. Zebra chip disease, Candidatus Liberibacter, and potato psyllid: A global threat to the potato industry. American Journal of Potato Research, 92, 230-235. https://doi.org/10.1007/s12230-015-9448-6

34.Ortega-Ojeda, F. E., H Larsson, and A. C. Eliasson 2004. Gel formation in mixtures of high amylopectin potato starch and potato starch. Carbohydrate Polymers, 56(4), 505-514. https://doi.org/10.1016/j.carbpol.2004.03.021

35.Pawelzik, E., and K. Möller. 2014. Sustainable potato production worldwide: the challenge to assess conventional and organic production systems. Potato Research, 57, 273-290. https://doi.org/10.1007/s11540-015-9288-2

36.Salman A. D., W. A. Hussein, Sh. A. Zaili and A. O. Mhawesh. 2024. Improving the quality of potato mini tubers by sustainable cultivation. Anbar Journal of Agricultural Sciences, 22(2): 1129-1138.

37.Sprenger, H., K. Rudack, C. Schudoma, A. Neumann, S. Seddig, R. Peters, E. Zuther et al. 2015. Assessment of drought tolerance and its potential yield penalty in potato. Functional Plant Biology, 42(7), 655-667. https://doi.org/10.1071/FP15013

38.Sudha, R. P. H. Mhatre, and E. P. Venkatasalam, Crop simulation models as decision-supporting tools for sustainable potato production: a review. Potato Research, 64(3), 387-419. https://doi.org/10.1007/s11540-020-09483-9

39.Schans, J. 1991. Optimal potato production systems with respect to economic and ecological goals. Agricultural Systems, 37(4), 387-397.

https://doi.org/10.1016/0308-521X(91)90060-N

40.Sheikhalipour, M., B. Esmaielpour, , G. Gohari, M. Haghighi, , H. Jafari, H. Farhadi and A. Kalisz. 2021. Salt stress mitigation via the foliar application of chitosan-functionalized selenium and anatase titanium dioxide in stevia (Stevia rebaudiana Bertoni). Molecules, 26(13), 4090. https://doi.org/10.3390/molecules26134090

41.Sorze, A., F. Valentini, A. Dorigato, and A. Pegoretti. 2023. Development of a xanthan gum based superabsorbent and water retaining composites for agricultural and forestry applications. Molecules, 28(4), 1952. https://doi.org/10.3390/molecules28041952

42.Toinga, V. S, M. I. V., J. M. Awika, and K. S. Rathore. 2022. CRISPR/Cas9-mediated mutagenesis of the granule-bound starch synthase gene in the potato variety Yukon Gold to obtain amylose-free starch in tubers. International Journal of Molecular Sciences, 23(9), 4640. https://doi.org/10.3390/ijms23094640

43.Tran, A. T. P, I. Chang, and G. Cho. 2019. Soil water retention and vegetation survivability improvement using microbial biopolymers in drylands." Geomechanics and Engineering 17.5: 475-483.

44.UN.2015.https://www.un.org/sustainabledevelopment/development-agenda/

45.Visser, R GF, L C Suurs, P M. Bruinenberg, I Bleeker, and E Jacobsen. 1997. Comparison between amylose‐free and amylose containing potato starches. Starch‐Stärke, 49(11), 438-443. https://doi.org/10.1002/star.19970491103

46.Wasan, S. M. K. and Ayad W. A. Al-Juboori. 2023. Effect of biofertilizers and spraying with magnesium and calcium on vegetative growth indicators of sweet corn. IOP Conf. Ser.: Earth Environ. Sci. 1225 012031

DOI 10.1088/1755-1315/1225/1/012031

47.Wikman, J., A. Blennow, and E. Bertoft, 2013. Effect of amylose deposition on potato tuber starch granule architecture and dynamics as studied by lintnerization. Biopolymers, 99(1), 73-83. https://doi.org/10.1002/bip.22145

48.World Health Organization. 2020. Mobilizing ambitious and impactful commitments for mainstreaming nutrition in health systems: nutrition in universal health coverage: global nutrition summit.

49.Yang, L., Y Liu, S. Wang, X. Zhang, J. Yang, and C. Du. 2021. The relationship between amylopectin fine structure and the physicochemical properties of starch during potato growth. International Journal of Biological Macromolecules, 182, 1047-1055. https://doi.org/10.1016/j.ijbiomac.2021.04.080

50. Yildizhan, H. 2017. Thermodynamics analysis for a new approach to agricultural practices: case of potato production. Journal of Cleaner Production, 166, 660-667. https://doi.org/10.1016/j.jclepro.2017.08.082

51.Zhang, H, X. U. Fen, W. U. Yu, H. Hu, and X Dai. 2017. Progress of potato staple food research and industry development in China. Journal of integrative agriculture, 16(12), 2924-2932.

https://doi.org/10.1016/S2095-3119(17)61736-2

52.Zhao, X., M. Andersson and R. Andersson, 2018. Resistant starch and other dietary fiber components in tubers from a high-amylose potato. Food Chemistry, 251, 58-63. https://doi.org/10.1016/j.foodchem.2018.01.028

Downloads

Published

2025-02-25

Issue

Section

Articles

How to Cite

K. D. H. Al-jubouri, I. J. Abdul Rasool, Aseel M.H. H. Al-Khafaji, A. J. Abdulsada, F. Y. Baktash, W. H. Hasoon, & Z. J. Al-Mousawi. (2025). UNRAVELING PROLONGED IRRIGATION INTERVALS AND SOME SUSTAINABLE TREATMENTS ON POTATO STARCH COMPOSITION, GROWTH, AND PRODUCTIVITY IN IRAQ. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(1), 321-329. https://doi.org/10.36103/s9q1w418

Similar Articles

1-10 of 463

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)