ESTABLISHMENT OF AN EFFICIENT MICROPROPAGATION PROTOCOLS FOR THREE KENAF (HIBISCUS CANNABINUS L.) CULTIVARS

Authors

  • A.M. Ibrahim
  • E. J. Aldabbagh
  • A. R. Abbas
  • F. Kayat

DOI:

https://doi.org/10.36103/dhxnja59

Keywords:

direct shoot; in vitro culture; callus; plant growth regulators

Abstract

This study was aimed to establish an efficient micropropagation protocol for three popular kenaf (Hibiscus cannabinus L.) cultivars (V36, HF992 and KB6) using different types of plant growth regulators (PGR’s) on Murashige and Skoog medium (MS). The shoot tip, cotyledon and hypocotyl isolated from 2 weeks old seedlings were used as explants. MS medium fortified with different types and concentrations of cytokinins and auxin were evaluated for establishment callus formation, shoot multiplication and rooting. Among different PGR’s used, 5.0 mg/l 2iP + 0.1 mg/l NAA was the best concentration for direct shoot regeneration from cotyledon with shooting percentage of 55% in HF992 cultivar. In multiple shoot induction experiment, 1.0 mg/l TDZ + 0.1 mg/l NAA mg/l concentration has induced the highest (10.4) shoots/explant. Moreover, indirect shoot regeneration was established from callus which was induced from cotyledon, maximum callus induction percentage (88.75%) was recorded on 0.5 mg/l TDZ and 1.0 mg/l NAA in V36 variety. While, for shoot elongation and rooting, MS media half strength supplemented with 1.0 mg/l kinetin + 1.0 mg/l IBA was found to be an optimum concentration.

References

Abdelrhman, H. A., M., Shahwahid, M. T., Paridah, A. R. A., Samad, M. A. A. E. I., Habib, and A., Ogeri 2016. Financial and technical assessment of Kenaf cultivation for producing fiber utilized in automotive components. Bus. Econ. J, 7, 1000254. DOI: 10.4172/2151-6219.1000254

Adlak T., S., Tiwari, M. K., Tripathi, N., Gupta, V. K., Sahu, P., Bhawar, and V. S., Kandalkar 2019. Biotechnology: An advanced tool for crop improvement. Curr J Appli Sci. Tech, 33 (1), 1-11. DOI:10.9734/cjast/2019/v33i130081

Al-Jubori, M. T., F. M. K. AL-Dabbagh, and E. W. Al-Ani, 2023. Optimizing media sterilization via chlorine dioxide and autoclaving of paulowni micropropagation. Iraqi Journal of Agricultural Sciences, 54(6), 1737-1745. https://doi.org/10.36103/ijas.v54i6.1872

Ayadi, R., L., Hamrouni, M., Hanana, S., Bouzid, M., Trifi, and M. L., Khouja 2011. In vitro propagation and regeneration of an industrial plant Kenaf (Hibiscus cannabinus L.). Ind. Crops Prod, 33(2): 474-480. https://doi.org/10.1016/j.indcrop.2010.10.025

Chadipiralla K., P., Gayathri, V., Rajani, and P.V.B., Reddy 2020. Plant Tissue Culture and Crop Improvement. In Sustainable Agriculture in the Era of Climate Change. 391-412. Springer, Cham.

DOI:10.1007/978-3-030-45669-6

Chen, P., R., Li, R., Zhou, and Y., Zhao 2010. Direct shoot organogenesis and plant regeneration from cotyledonary node of Kenaf (Hibiscus cannabinus L.). Afr. J. Biotechnol, 9(50), 8693-8697. DOI:10.4314/AJB.V9I50

Chew, S. C., and K. L. Nyam 2019. Kenaf (Hibiscus cannabinus L.) seed oil. In Fruit Oils: Chemistry and Functionality. Springer, Cham. pp: 451-494. https://doi.org/10.1007/978-3-030-12473-1_23

Cistué, L., M. P., Vallés, B., Echávarri, J. M., Sanz, and A., Castillo 2003. Barley anther culture. In Doubled Haploid Production in Crop Plants. Springer, Dordrecht, pp: 29-34. https://doi.org/10.1007/978-94-017-1293-4_5

Duke, J. A. 1983. Hibiscus cannabinus L. Malvaceae Kenaf, Bimli, Bimlipatum, Jute, Deccan hemp. In Handbook of Energy Crops. https://doi.org/10.1079/9781789247282.0010

.Scott,T.K., Evans, M. L., W. P., Jacobs, H., Kaldewey, A. C., Leopold, A. G., Matthysse, A. W.,Naylor, and S., Zajaczkowski, 2012. Hormonal Regulation of Development II: The Functions of Hormones from the Level of the Cell to the Whole Plant (Vol. 10). Springer Science & Business Media:200-204.

DOI: 10.1007/978-3-642-67731-1

Fernando, A. L. 2013. Environmental Aspects of Kenaf Production and Use. In Kenaf: A Multi-Purpose Crop for Several Industrial Applications. Springer, London, pp: 83-104. DOI. 10.1007/978-1-4471-5067-1_5

Giwa Ibrahim, S. A., R., Karim, N., Saari, W. Z., Wan Abdullah, N., Zawawi, A. F., Ab Razak, and R. U. A., Umar 2019. Kenaf (Hibiscus cannabinus L.) seed and its potential food applications: a review. J. Food Sci, 84(8): 2015-2023.

https://doi.org/10.1111/1750-3841.14714

Gomez-Cadenas, A., V., Vives, S., Zandalinas, M., Manzi, A., Sanchez-Perez, R., Perez-Clemente, and V., Arbona 2015. Abscisic acid: a versatile phytohormone in plant signaling and beyond. Curr. Protein Pept. Sci, 16(5):413-434. DOI: 10.2174/1389203716666150330130102

Hassanisaadi, M., M., Barani, A., Rahdar, M., Heidary, A., Thysiadou, and G. Z., Kyzas, 2022. Role of agrochemical-based nanomaterials in plants: Biotic and abiotic stress with germination improvement of seeds. Plant Growth Regulation, 97(2): 375-418. DOI: 10.1007/s10725-021-00782-w

Herath, S. P., T., Suzuki, and K., Hattori 2004. Multiple shoot regeneration from young shoots of Kenaf (Hibiscus cannabinus). Plant Cell, Tissue and Organ Culture, 77(1): 49-53. DOI: 10.1023/B:TICU.0000016497.79856.9a

Ibrahim, M 2022. Role of Endogenous and Exogenous Hormones in Bioactive Compounds Production in Medicinal Plants Via In Vitro Culture Technique. Plant Hormones: Recent Advances, New Perspectives and Applications pp: 131.

DOI: 10.5772/intechopen.102814

Khan S., Z., Rafi, A., Baker, A., Shoaib, A.G., Alkhathami, M., Asiri, and S., Mansoor 2022. Phytochemical screening, nutritional value, anti-diabetic, anti-cancer, and anti-bacterial assessment of aqueous extract from Abelmoschus esculentus Pods. Processes, 10(2): 183. https://doi.org/10.3390/pr10020183

Kozlowski, R., and M., Mackiewicz-Talarczyk, (Eds.). 2020. Handbook of Natural Fibres: Volume 1: Types, Properties and Factors Affecting Breeding and Cultivation. Woodhead Publishing. PP:630. DOI:10.51202/0323-3243-2021-2-053-1

Kumlay, A. M., K. A. Y. A., Canan and B., Yildirim 2021. Different Plant Growth Regulators on Improvement of Potato (Solanum tuberosum L.). Journal of the Institute of Science and Technology, 11(2), 1603-1615. DOI: 10.21597/jist.873537

McLean, K. S., G. W., Lawrence, and N. A., Reichert 1992. Callus induction and adventitious organogenesis of Kenaf (Hibiscus cannabinus L.). Plant Cell Reports, 11, 532-534. DOI: 10.1007/BF00236272

Mohd, H., A., Arifin, J., Nasima, A. H., Hazandy, and A., Khalil 2014. Journey of Kenaf in Malaysia: a review. Scientific Research and Essays, 9(11): 458-470. DOI: 10.5897/SRE12.471

Munaweera, T. I. K., N. U., Jayawardana, R., Rajaratnam, and N., Dissanayake 2022. Modern plant biotechnology as a strategy in addressing climate change and attaining food security. Agriculture & Food Security, 11(1), 1-28. DOI: 10.1186/s40066-022-00369-2

Murashige, T. and F. Skoog 1962. A revised medium for rapid growth and bioassays with tobacco cultures, Physiol. Plant, 15, 437-497.

DOI: 10.1111/j.1399-3054.1962.tb08052.x

Odahara, M., Y., Horii, M., Kimura, and K., Numata 2020. Efficient callus induction and a temperature condition for flowering and seed setting in Kenaf Hibiscus cannabinus. Plant Biotechnl,37(1),9-14. doi: 10.5511/plantbiotechnology.19.1120a

Osama, S. S. 2022. Micropropagation of grapevine (Vitis Vinifera L.) Cvs. red globe and Superior. Iraqi Journal of Agricultural Sciences 53(4), 833-849. https://doi.org/10.36103/ijas.v53i4.1596

Pascoal, A., R., A. L., Quirantes-Piné, E., Fernando, Alexopoulou, and A., Segura-Carretero 2015. Phenolic composition and antioxidant activity of Kenaf leaves. Ind. Crops Prod,78,116-123. https://doi.org/10.1016/j.indcrop.2015.10.028

Reddy, C. R. K., B., Jha, Y., Fujita, and M., Ohno 2008. Seaweed micropropagation techniques and their potentials: an overview. J. Appl. Phyco, 20(5): 609-617.

Sim, Y. Y., and K. L.,Nyam 2021. Hibiscus cannabinus L.(Kenaf) studies: Nutritional composition, phytochemistry, pharmacology, and potential applications. Food chemistry, 344, 128582. DOI: 10.1007/978-1-4020-9619-8_21

Sultana, R., A. K. M. L.,Quader, M., Haque, S., Mazumder, and S. K., Paul 2016. In vitro studies on Shoot Proliferation induction of Kenaf (Hibiscus cannabinus L.). World J. Agric.Sci.,12(1):25-30 DOI:10.5829/idosi.wjas.2016.12.1.1890

Thangavel, P., S., Natarajan, V., Shanmugam, S. M., Sulaiman, and R., Ramasamy, 2019. Lofty frequency and reproducible plant regeneration from mature nodal explants of ‘‘Egusi’’melon (Citrullus colocynthis L.). BioTechnologia, 100(3): 263–272. DOI: 10.5114/bta.2019.87585

Toma, R. S. 2022. Minitubers production of four potato (solanum tuberosum l.) cultivars by tissue culture technique. Iraqi Journal of Agricultural Sciences, 53(5):1058-1066. https://doi.org/10.36103/ijas.v53i5.1619

Xiao, Z., and W. A., Kerr 2022. Biotechnology in China–regulation, investment, and delayed commercialization. GM Crops & Food,13(1):86-96. doi: 10.1080/21645698.2022.2068336

Zahid, N. A., H. Z., Jaafar, and M., Hakiman 2021. Alterations in microrhizome induction, shoot multiplication and rooting of ginger (Zingiber officinale Roscoe) var. Bentong with regards to sucrose and plant growth regulators application. Agronomy, 11(2),320. https://doi.org/10.3390/agronomy11020320

Zainuddin, Z., N. S. M., Pauzi, and N. A. S., Bahari, 2021. Establishment of In Vitro Propagation of Hibiscus cannabinus (Kenaf). Science Heritage Journal (GWS), 5(1) :5-7. DOI:10.26480/gws.01.2021.05.07

Downloads

Published

2024-06-26

Issue

Section

Articles

How to Cite

A.M. Ibrahim, E. J. Aldabbagh, A. R. Abbas, & F. Kayat. (2024). ESTABLISHMENT OF AN EFFICIENT MICROPROPAGATION PROTOCOLS FOR THREE KENAF (HIBISCUS CANNABINUS L.) CULTIVARS . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 55(3), 1064-1074. https://doi.org/10.36103/dhxnja59

Similar Articles

1-10 of 670

You may also start an advanced similarity search for this article.