IMPROVEMENT OF GROWTH, PHYSIOLOGICAL AND BIOCHEMICAL TRAITS OF SUNFLOWER BY IAA AND BAP UNDER SALINITY STRESS in vitro
DOI:
https://doi.org/10.36103/bvg71e46Keywords:
Callus cultures, abiotic stress, relative water content, sodium chlorideAbstract
This study was established to investigate the ability of the sunflower callus plant (Helianthus annuus L.) to tolerate salinity stress for two levels of NaCl (0 and 80 mM), three concentrations of IAA (0, 1.0, and 2.0 mg l-1), and BAP (0, 1.0, and 2.0 mg l-1) in lab conditions. Calli cultures were induced from the cotyledon of H. annuus L. cultured in an appropriate combination of growth regulators 2,4-D and kintein. The salinity results exhibited negative effects in most of the study indications, which can be revealed by a significant increase in sodium content (Na+), hydrogen peroxide (H2O2) and malondialdehde content (MDA). While, the decrease in the study indications such as fresh weight (FW), dry weights (DW), relative water content (RWC), potassium content (K+), sodium/ potassium ratio (Na+/K+), superoxide dismutase (SOD), and catalase (CAT) enzymes activity. The experiment revealed a positive effect for the exogenous growth regulators IAA and BAP in reducing the harmful effects of salinity stress on calli cultures. The nominated regulators succeeded in reducing the harmful effects of salinity stress, where the FW, DW, RFW, browning density (BI), RWC, K+, Na+/K+, SOD, and CAT enzymes activity. However, the exogenous growth regulators reduced the negative effect for each of Na+, H2O2, and MDA under the salinity stress.
References
1. Al-jubouri, A.J.M., A.A.S. Odallol, and R. Abd Al-Mohsen, 2005. The use of tissue culture technique in evaluating five genotypes of bread wheat (Triticum aestivum L). to tolerate salt stress. Iraqi Journal of Science and Technollogy,2(2): 71-89.
2. Arif, Y., P. Singh, H. Siddiqui, B. Bajguz, and S. Hayat, 2020. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156: 64–77 https://doi.org/10.1016/j.plaphy.2020.08.042
3. Ashoori, M., S. Ashraf, and Z.T. Alipour, 2015. Investigating the effect of two species of mycorrhiza fungi and salinity on growth, function and chlorophyll content on Ocimum basilicum. Int J Agric Crop Sci 8:503. http://doi.org/10.1016/j.sjbs.2016.02.010
4. AOAC, 1980. Official Methods of Analysis. 13th ed. Association of Official Analytical Chemists. Washington, D.C https://doi.org/10.1002/jps.2600700437
5. Daud, M.K, L. Mei, U. Najeeb, M.A. Khan, F. Deeba, I. Raza, A. Batool, and S.J. Zhu, 2014. In vitro cadmium-induced alterations in growth and oxidative metabolism of upland cotton (Gossypium hirsutum L.). The Scientific World Journal, Volume 2014, Article ID 309409, 10 pages. http://doi.org/10.1155/2014/309409.
6. Guo, Y., H. Yu, M. Yang, D. Kong, and Y. Zhang, 2018. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum murr. Seedling. Russ. J. Plant Physiol. 65, 244–250 http://doi.org/10.1134/S1021443718020127
7. Ibrahim, K.M. 2017. Applications in Plant Biotechnology, College of Biotechnology, Al-Nahrain university, pp: 680.
8. Ighodaro, O. M. and O. A. Akinloye, 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in theentire antioxidant defence grid. Alexandria Journal of Medicine, 54(4): 287-293. https://doi.org/10.1016/j.ajme.2017.09.001
9. lIias, I., G. Ouzounidou, A. Giannakoula, and P. Papdopoulou, 2007. Effect of gibberellic acid and prohexadione-calcium on growth, chlorophyll fluorescence and quality of okra plant. Biol Plant 51:575–578 http://doi.org/10.1007/s10535-007-0126-5
10. Javed, F. 2002. In vitro salt tolerance in wheat. II: organicsolute accumulation in callus. International Journal of Agriculture and Biology, 4(4): 462–464. http://doi.org/10.9755/ejfa.v22i4.4878
11. Karimi, S., A. Yadollahi, R. Nazari-Moghadam, A. Imani, and K. Arzani, 2012. In vitro screening of almond Prunus dulcis (mill.) genotypes for drought tolerance. J Biol Environ Sci 6:263–270.
12. Kaur, S., A.K. Gupta, and N. Kaur, 2000. Effects of GA3, kinetin and indole acetic acid on carbohydrate metabolim in chickpea seedlings germinating under water stress. Plant Growth Regul 30:61–7. http://doi.org/10.1023/A:1006371219048
13. Khalid, A. and F. Aftab, 2020. Effect of exogenous application of IAA and GA3 on growth, protein content, and antioxidant enzymes of Solanum tuberosum L. grown in vitro under salt stress. In Vitro Cellular and Developmental Biology-Plant, 56:377–389. http://doi.org/10.1007/s11627-019-10047-x
14. Khuder, H.H. and Y.I.H. Al-Taei, 2015. Effect of stress on some growth indicators and cellular components of wheat T. aestivum L. callus .Inter. J. of Applied. Agric. Sci. 1(4):91-94.
15. Koutoua, A., D. Hmouni, H. Elyacoubi, R. Moutiq, L. Zidane, and A. Rochdi, 2015. Funcitional variation of potassium sodium and chloride ions selected salt tolerant-calli from durum wheat T. durum desf. Muture embryo . J. Mater. Environ. Sci. 6(5):1285-1291.
16. Liu, X., X. Li, Z. Qliao, W. Li, B. Gao, and L. Han, 2020. Chemical composition, antimicrobial and antioxidant activities of essential oils from the receptacle of sunflower (Helianthus annuus L). Ministry of Education, Changchum 130012.PR China. https://doi.org/10.3390/molecules 25225244
17. Love, J.D. and A.M. Pearson, 1971. Lipid oxidation in meat and meat products. A review. J. Am. Oil Chem. Soc. 48:547-549.
18. Luhova, L., D. Hederova, and P. Pec, 2003. Activites amino oxidase, peroxidase and catalase in seedlings of Pisum sativum L. under different conditions. Plant and Soil Environment. 49(4): 151-157. http:// doi.org /10.17221/4106-PSE
19. Marklund, S. and G. Marklund, 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Europ. J. Biochem., 47: 469-474. https://doi. org /10.1111/j.1432-1033.1974.tb03714.x
20. Mozafari, A.A., D.S. Sajede, D.S., and N. Ghaderi, 2018. Positive responses of strawberry (Fragaria × ananassa Duch.) explants to salicylic and iron nanoparticle application under salinity conditions. Plant Cell, Tissue and Organ Culture: 134:267–275. https:// doi.org/10. 1007/s11240-018-1420-y
21. Munns, R., and M. Tester, 2008. Mechanisms of Salinity Tolerance. Annu Rev Plant Biol. http://doi.org/10.1146/annurev. arplant.59.032607.092911
22. Murashige, T. and F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant., 15: 473-497. https://doi.org/10.1111 /j.1399-3054.1962.tb08052.x
23. Neamah, S.I., and D. I. Lama. 2023. Metabolic responses to in vitro in drought-tolerant in a Cucurbita pepo L. elicited by salicylic acid and zinc oxide nanoparticles. Iraqi Journal of Agricultural Sciences, 54(5):1223-1233. https://doi.org/10.36103/ijas.v54i5.1817
24. Noon, A. H. , and L. K. J. Al-Amery. 2024. Effect of different levels of salt and drought stresses on gene expression of two tolerance-different tomato cultivars in vitro. Iraqi Journal of Agricultural Sciences, 55(2):795-802. https://doi.org/10.36103/gc35eh69
25. Neamah, S. I., and A. H. Hamad, 2020. The effects of paclobutrazol on enhancing tolerance of Plantago major L. to cadmium stress in vitro. Australian Journal of Crop Science, 14(12): 2028-2035. http://doi.org/10.21475/ajcs.20.14.12.2968.pdf
26. Neamah, S. I. and N.A. Jdayea, 2022. Positive response of Hyoscyamus pusillus callus cultures to exogenous melatonin on biochemical traits and secondary metabolites under Drought conditions, International Journal of Agronomy, 1-10.
https://doi.org/10.1155/2022/7447024
27. Sahraroo, A., M.H. Mirjalili, P. Corchete, M. Babalar, and M.R.F. Moghadam, 2016. Establishment and characterization of a Satureia khuzistamica Jamzad (Lamiaceae) cell suspension culture: a new in vitro source of rosmarinic acid. Cytotechnology 68:1415-1424. https://doi.org/10.1007/s10616-015-9901-x
28.Souri, Z., N. Karimi, and L.M. de Oliveira, 2017. Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environ. Technol. 39: 1316–1327.https://doi.org/10.1080/09593330.2017.1329349
29. Tendon, H.L.S. 2005. Methods of Analysis of Soils, Plants, Water, and Fertilizers. Fertilization Development and Consultation Organization, New Delhi, India.
30. Yamakawa, T., O. Kurahashi, K. Ishida, S. Kato, T. Kodama, and Y. Minoda, 1979. Stability of indole-3-acetic acid to autoclaving, aeration and light illumination. Agric. Biol. Chem., 43 (4), 879- 880. https://doi.org/10.1080/00021369.1979.10863551
31. Yasir, S.S., R. M. Hamad, and S. I. Neamah, 2022. Role of dimethyl sulfate on biochemical characteristics of Fragaria ananassa Duch under salinity stress in vitro, Iraqi Journal of Agricultural Sciences, 53(1):111-121. https://doi.org/10.36103/ijas.v53i1.1514
32. Zaidan, M. M. 2017. Initiation of Genetic Variations by Using Gamma Rays and Colocynth Plant Extract in Callus of Different Wheat Cultivars to Tolerant Drought and Salinity in vitro. A Ph.D., Dissertation, Departmemt of Field Crop College of Agricultural Engineering Sciences, University of Baghdad.
33. Zulfiqar, H., M. Shahbaz, M. Ahsan, M. Nafees, H. Nadeem, M. Akram, A. Maqsood, S. Ahmar, M. Kamran, S. Alamri, M.H. Siddiqui, S. Saud, and S. Fahad, 2020. Strigolactone (GR24) Induced salinity tolerance in Sunflower (Helianthus annuus L.) by ameliorating morpho-physiological and biochemical attributes under in vitro conditions. Journal of Plant Growth Regulation, 40: 2079–2091. https:// doi.org/10.1007/s00344-020-10256-4
Downloads
Published
Issue
Section
License
Copyright (c) 2024 IRAQI JOURNAL OF AGRICULTURAL SCIENCES
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.