GENETIC PARAMETERS OF GROWTH, CARCASS, AND LAYING TRAITS IN TWO LINES OF UKRAINIAN QUAIL
DOI:
https://doi.org/10.36103/mh63qs86Keywords:
Genetic and phenotypic correlation, response to selection, selection deferential, heritability, quail.Abstract
The estimation of genetic parameters of certain productive characters in different lines of quail is very important to make a breeding schedule for such lines of quail in the future. This study was carried out for three generations to estimate the response to selection, selection deferential, genetic, and phenotypic correlation between studied traits (growth and laying performance) and heritability estimates in two lines of Ukrainian quail (Coturnix coturnix coturnix). A total of 120 Ukrainian quails from ) 500 ( quail birds (base population), were
selected as parent generation for both lines and also 120 offspring birds specified for the third generation. The selection was based on body weight which was carried out on the 20th day of age. The results showed that the selection can improve breast weight, leg weight, carcass%, and live body weight in both lines. However, the realized heritability has moderate values for 42-day age body weight for both lines; but the dark line recorded a higher genetic correlation between body weight and weight gain compared to the white line. The highest phenotypic correlation estimates between body weight and egg weight were recorded for the white line; in addition, the same line receded better estimates for the studied genetic parameters in all other studied characteristics. It could be concluded that the selection based on the genetic parameters for growth and laying traits was effective for improving it through the three generations.
References
1. Ahmad, H. A. 2009. Poultry growth modeling using neural networks and simulated data. J. Appl. Poult. Res. (18):440–446.
2. Akpa, G. N., J. Kaye, I. A. Adeyinka, and M. Kabir. 2008. The relationships between laying age and repeatability of egg quality traits in Japanese quails (Coturnix coturnix japonica). Int. J. of Poult. Sci. 7-6. 555 – 559.
3. Aksit, M., I. Oguz, Y. Akbas, O. Altan, and M. Ozdogan. 2003. Genetic variation of feed traits and relationships to some meat production traits in Japanese quail (Coturnix coturnix japonica). Arch Geflugelkd. 67-2: 76-82.
4. Alkan, S., K. Karabag, A. Galic, T. Karsli, and M.S. Balcioglu. 2010. Determination of body weight and some carcass traits in Japanese quails (Coturnix coturnix japonica) of different lines. Kafkas Univ Vet. Fak. Derg., 16-2: 277-280.
5. Anthony, N. B., D. A. Emmerson, K. E. Nestor, W. L. Bacon, P. B. Siegel, and E. A. Dunnington. 1991. Comparison of growth curves of weight-selected populations of turkeys, quail, and chickens. Poult. Sci. (70): 13–19.
6. Barbieri, A., R. K. Ono, L. L. Cursino, M. M. Farah, M. P. Pires, T. S. Bertipaglia, A. V. Pires, L. Cavani, L. O. Carreno, and R. Fonseca.2015. Genetic parameters for body weight in meat quail. Poult. Sci. (94): 169–171.
7. Barilania, M., S. Deregnaucourte, S.Gallegob, N. Gallic, R. Muccia, M. Piomboc, Puigcerverd, S. Rimondia, D. Rodríguez, S. Teijeirob, Spanòc and E. Randia. 2005. Detecting hybridization in wild (Coturnix c. coturnix) and domesticated (Coturnix c. japonica) quail populations. Biological Conservation, 126-4: 445-455.
8. Cramp, S., and K. Simmons.1980. The birds of the Western Palearctic, hawks to bustards. Oxford, UK: Oxford University Press. (2): 695.
9. Durmus, I., S. Alkan, K. Narinc, Karabag and T. Karsli. 2017. Effect of mass selection on egg production on some reproductive traits in Japanes quail. Europ. Poult. Sci, (10): 1399/eps.168.
10. Falconer, D. S. 1989. Introduction to quantitative genetics 3rd edition, Longman, London, New York, 160-174.
11. Fuller, R. C., C. F. Baer, and J. Travis. 2005. How and when selection experiments might actually be useful. Integrated Comparative Biology. (45): 391-404.
12. Hill, W. J., T. F. C. Mackay and D. S. Falconer. 2004. Introduction to quantitative genetics. Genetics (167):1529-1536.
13. Kranis, A., P. M. Hocking, W. G. Hill, and J. A. Woolliams. 2006. Genetic parameters for a heavy female Turkey line: impact of simultaneous selection for body weight and total egg number. Brit Poult. Sci. (47): 685–693.
14. Lukanov, H., A. Genchev and P. Kolev. 2019. Egg quality traits in WG, GG and GL Japanese quail populations. Trakia J. Sci. (17): 49-55.
15. Melnyk, V. V., N. P. Prokopenko and S. M. Bazyvolyak. 2019. Poultry farming in Ukraine: poultry and egg and meat production, Modern poultry. 3-4: 2-8 (in Ukrainian).
16. Melnyk, Yu. F., V. P. Kovalenko and A. M. Uhnivenko. 2008. Selection of farm animals. Kyiv. Intas (in Ukrainian).
17. Minvielle, F., E. Hirigoyen; and M. Boulay.1999. Associated effects of the Roux feather colour mutation on growth, carcass traits, egg production, and reproduction of Japanese quail. Pou. Sci. (78): 1479-1484.
18. Minvielle, F., J. L. Monvoisin, J. Costa and Y. Maeda. 2000. Long-term egg production and heterosis in quail lines after within-line or reciprocal recurrent selection for high early egg production, Brit. Poult. Sci. (41): 150–157.
19. Minvielle, F. 1998. Genetic and breeding of Japanese quail for production around the world. Proceedings 6th Asian Pacific poultry congress Nagoya, Japan. hal-02764843.
20. Minvielle, F.2004. The future of Japanese quail for research and production. Poult. Sci. (60): 500-507.
21. Mohammadi, T. A., A. Maghsoudi, K. F. Bagherzadeh, M. Rokouei, and A. H. Faraji.2018. Bayesian analysis ofgenetic parameters for early growth traits and humoral immune responses in Japanese quail. Livest. Sci. (216): 197–202.
22. Narinc, D., A. Aygun, E. Karaman, and T. Aksoy.2015. Egg shell quality in Japanese quail: characteristics, heritabilities and genetic and phenotypic relationships. Animal. (9): 1091–1096.
23. Narinç, D., T. Aksoy and T. Kaplan. 2016. Effects of multi-trait selection on phenotypic and genetic changes in japanese quail (Coturnix coturnix Japonica). The Journal of Pou. Sci. (53):103-110.
24. Narinc, D., T. Aksoy, and E. Karaman. 2010. Genetic parameters of growth curve parameters and weekly body weights in Japa-nese quail (Coturnix coturnix japonica). J. Anim. Vet. (9): 501-507.
25. ONI., 2007. Genetic and phenotypic relationships between mcnally model parameters and egg production traits. International Journal of Poultry Science. 6-1: 8-12, Available from: <http://docsdrive.com/pdfs/ansinet/ijps/8- 12.pdf>.
26. Ozcelik, M. 2002. The phenotypic correlations among some external and internal quality characteristics in quail eggs. Ankara Univ. Vet. Fak. Derg. (49): 67–72.
27. Pereira, J. C. 2004. Melhoramento genético aplicado à produção animal. 4.ed. Belo Horizonte, Fepmvz. 609p.
28. Prado, G. E., A. L. Ramirez and C. J. Segura. 2003. Genetic parameters for body weight of Creole chickens from southeastern Mexico using an animal model. Livestock Research for Rural Development. (15): 1-7.
29. Reddy, R.P. 1996. Symposium: the effects of long term selection on growth of poultry. Introduction. Poult. Sci. (75):1164-1167.
30. Sari, M., M. Tilki, and M. Saatci. 2011. Genetic parameters of slaughter and carcass traits in Japanese quail (Coturnix coturnix japonica). Br. Poult. Sci. (52): 169–172.
31. Sari, M., M. Tilki, and M. Saatci. 2016. Genetic parameters of egg quality traits in long-term pedigree recorded Japanese quail. Poult. Sci. (95): 1743–1749. http://dx.doi.org/10.3382/ps/pew118.
32. SAS Institute.2014. Statistical Analysis System (SAS, institute, Inc.), version 9.4. Cary NC, USA.
33. Savegnago, R.P. 2011.Estimates of genetic parameters, and cluster and principal components analysis of breeding values related to egg production traits in a White Leghorn population. Poult.Sci.(90):2174 2188.Availablefrom:<http://ps.oxfordjournals.org/content/90/10/2174. full.pdf+html>. Accessed: Apr. 11, 2016.
doi: 10.3382/ps.2011-01474.
34. Seker, I., F. Ekmen, M. Bayraktar and S. Kul. 2004. The effects of parental age and mating ratio on egg weight, hatchability and chick weight in Japanese quail. Journal of Animal and Veterinary Advances. (3): 424-430.
35. Shanaway, M. M. 1994. Quail production systems: a review. Rome, Food and Agriculture Organization of the United Nations. ISBN 92-5: 103384-6.
36. Silva, L. P., J. C. Ribeiro, A. C. Crispim, F. G. Silva, C. M. Bonafe, F. F. Silva, and R. A. Torres. 2013. Genetic parameters of body weight and egg traits in meat-type quail. Livest. Sci. (153): 27–32.
37. Silversides, F. G., and T. A. Scott. 2001. Effect of storage and layer age on quality of eggs from two lines of hens. Poult. Sci. (80): 1240– 1245.
38. Szwaczkowski, T. 2003. Use of mixed model methodology in poultry breeding: estimation of genetic parameters. In: Muir WM, Aggrey SE, editor. Poultry genetics, breeding and biotechnology. Wallingford: CAB International. 165-210.
39. Toelle, V. D., G. B. Havenstein, K. E. Nestor and W. R. Harvey. 1991. Genetic and phenotypic relationship in Japamese quail. 1. Body weight, Carcass and organ measurements. Poult. Sci. (70): 1679-1688.
40. Vali, N., M. Edriss, and H. Moshtaghi. 2006. Comparison of egg weight between two quail strains. Int. J. Poult. Sci. (5): 398- 400.
41. Wolc, A. and T. Szwaczkowski. 2009. Estimation of genetic parameters for monthly egg production in laying hens based on random regression models. Journal of Applied Genetics. (50): 41-46. Available from <http://www.livestockscience.com/ article/S1871-1413(13)00070-X/pdf>.
42. Zerehdaran, S., E. Lotfi and Z. Rasouli. 2012. Genetic evaluation of meat quality traits and their correlation with growth and carcass composition in Japanese quail. British Poult.Sci. (53): 756–762.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 IRAQI JOURNAL OF AGRICULTURAL SCIENCES
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.