PROMOTING FOOD SECURITY VIA CONTROLLING TOMATOES MARKETABILITY BY USING RNAi TECHNOLOGY, PECTIN AND ORGANIC CALCIUM
DOI:
https://doi.org/10.36103/xxsymj86Keywords:
mesocarp, exocarp, firmness, on-plant fruits longevity, Responsible consumption and productionAbstract
RNAi gene silencing was performed by utilizing pectate lyase, an enzyme capable of degrading pectin, in conjunction with subsequent pectin (organic waste) and organic calcium treatment, allowing for prolonged retention of tomatoes on the plant without compromising quality traits. The study was conducted at two locations using a randomized complete block design (RCBD) and consisted of nine treatments. Results showed that SlPL-RNAi plants had the most fruit firmness and Mesocarp thickness; with values of 13.1 kg/cm² and 167.5 µm, respectively, followed by the CaP1P2 treatment (8.56 kg/cm² and 117.0 µm). SlPL-RNAi fruits also showed higher calcium and pectin contents and lower polygalacturonase (PG) activity, which were associated with firmer fruits and prolonged on-plant period (from pink stage to spoil, 33.7 days). Likewise, the CaP1P2 application increased the thickness and firmness of the tissue with a shelf life of up to 20 days. These advancements were credited to increased levels of calcium and pectin along with inhibited action of ripening- associated enzymes. This study provides a useful incorporation of RNAi and biochemical treatments as effective approaches to induce postharvest loss and promote food and environmental sustainability.
References
1. Al-Hadeethi, M. A., J. K. Ali, Z. Al-Moussawi. 2020. Characters anatomy of Corchorus olitorius L. From malvaceae family cultivated in Iraq. International Journal of Pharmaceutical Research, 12(1), pp. 211– 214. Doi: 10.31838/ijpr/2020.12.01.041
2. Aworth, O. C., Olorunda, A. O., and I. A. Akhuemonkhan, 198. Effects of post-harvest handling on quality attributes of tomatoes in the Nigerian marketing system. Food Chemistry, 10(3), 225-230. https://doi.org/10.1016/0308-8146(83)90058-4
3. AOAC .2000. Official Methods of Analysis. The Association of Official Analytical Chemists, Gaithersburg, MD, USA.
4. Adekiya, A. O., Ogunbode, T. O., Esan, V. I., Adedokun, O., Olatubi, I. V., and Ayegboyin, M. H. 2025. Impact of Calcium Sources on Soil Chemical Properties, Tomato Growth, Yield, and Quality. The Scientific World Journal, 2025(1), 6653874. https://doi.org/10.1155/tswj/6653874 https://doi.org/10.36103/zvrre033
5. Aigner, A. 2006. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. Journal of biotechnology, 124(1), 12-25. https://doi.org/10.1016/j.jbiotec.2005.12.003
6. Ayour, J., H. Harrak, and M. Benichou. 2024. Cell Wall Enzymatic Activity Control: A Reliable Technique in the Fruit Ripening Process.
https://doi.org/10.5772/intechopen.113752
7. Caines, A. M., and C. Shennan. 1999. Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differing in Ca2+ use efficiency. Plant Physiology and Biochemistry, 37(7-8), 569-576.
https://doi.org/10.1016/S0981-9428(00)80109-6
8. Delarue, M., M. Benhamed, and S. Fragkostefanakis. 2024. The role of epigenetics in tomato stress adaptation. New Crops 2: 100044 https://doi.org/10.1016/j.ncrops.2024.100044.
9. Dodgson, J., A.K. Weston, and D.J. Marks. 2023. Tomato Firmness and Shelf-Life Increased by Application of Stimulated Calcium. Crops 3(4): 251–265. https://doi.org/10.3390/crops3040023.
10. Egan, H.; R. S.Krik, and R.Sawyer, 1976. Pearson’s Chemical Analysis of Foods 7th ed. chur chill living stone. NY. USA.
11. Elias, M.S., and K.D.H. Al-Jubouri. 2022. Investigate genetic relation among watermelon cultivars using molecular dna markers. Iraqi Journal of Agricultural Sciences, 53(3): 712–723. https://doi.org/10.36103/ijas.v53i3.1581.
12. Eric, A.; I. Oduro; P. Kumah. 2015. Postharvest quality response of tomato (Lycopersicon esculentum, Mill) fruits to different concentrations of calcium chloride at different dip-times. Am. J. Food Nutr. 5, 1–8.
13. Feng, D., X. Wang, J. Gao, C. Zhang, Hao Líu, et al. 2023. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance. Frontiers in Plant Science 14.
doi: https://doi.org/10.3389/fpls.2023.1143963.
14. Gan, L., M. Song, X. Wang, N. Yang, H. Li, et al. 2022. Cytokinins is involved in regulation of tomato pericarp thickness and fruit size. Horticulture Research. https://doi.org/10.1093/hr/uhab041.
15. Garnida, Y., Y. Taufik, and Y. Yelliantty. 2022. Effect of Edible Coating Material Formulation and Storage Long on The Response of Tomato (Solanum Lycopersicum L.) at Cooling Temperature (Lycopersicon Esculentum Mill). Jurnal Penelitian Pendidikan IPA 8(5): 2399–2409. https://doi.org/10.29303/jppipa.v8i5.2101.
16. Huang, W., Y. Shi, H. Yan, H. Wang, D. Wu, et al. 2023. As assessment of shelf life increasing competence of pectin (Zucchini) based edible coating on tomatoes. Environmental Research, 258, 119368. https://doi.org/10.1016/j.envres.2024.119368
17. Hyodo, H., A. Terao, J. Furukawa, N. Sakamoto, H. Yurimoto, et al. 2013. Tissue Specific Localization of Pectin–Ca2+ Cross-Linkages and Pectin Methyl-Esterification during Fruit Ripening in Tomato (Solanum lycopersicum) (R. Balestrini, editor). PLoS ONE 8(11): e78949. https://doi.org/10.1371/journal.pone.0078949.
18. Jain, V., S.Chawla, , P.Choudhary, and S. Jain. 2019. Post-harvest calcium chloride treatments influence fruit firmness, cell wall components and cell wall hydrolyzing enzymes of Ber (Ziziphus mauritiana Lamk.) fruits during storage. Journal of Food Science and Technology, 56, 4535–4542. https://doi.iScience 24(8): 102926. https://doi.org/10.1016/j.isci.2021.102926.
19. Jhanani, G.K., M.S. AlSalhi, N. T, and R. Shanmuganathan. 2024. As assessment of shelf life increasing competence of pectin (Zucchini) based edible coating on tomatoes. Environmental research 258: 119368.
20. Jijan, R. A. 2012. Production, Purification, and Characterization of the Enzyme Polygalacturonase from A Local Isolate of the Mold Aspergillus Niger TP4 Using Solid-State Fermentation. Ph.D. Dissertation, Department of Food Science, College of Agriculture, University of Baghdad, Iraq.
21. Khdir, S.A., N.S., Ahmad, E.O. Hama-Ali, and Sh. M. Abdullah. 2023. Genetic diversity and population structure of common bean genotypes using morphological traits and SSR. Iraqi Journal of Agricultural Sciences, 54(3), 792–805. https://doi.org/10.36103/ijas.v54i3.1762
22. Kong, X., M. Yang, B.H. Le, W. He, and Y. Hou. 2022. The master role of siRNAs in plant immunity. 23(10): 1565–1574. https://doi.org/10.1111/mpp.13250.
23. Kryovrysanaki, N., A. James, M. Tselika, E. Bardani, and K. Kalantidis. 2022. RNA silencing pathways in plant development and defense. The International Journal of Developmental Biology.
doi: https://doi.org/10.1387/ijdb.210189kk.
24. Li, S., K. Chen, and D. Grierson. 2018. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. New Phytologist 221(4): 1724–1741. https://doi.org/10.1111/nph.15545.
25. Liang, Q., H. Deng, Y. Li, Z. Liu, P. Shu, et al. 2020. Like Heterochromatin Protein 1b represses fruit ripening via regulating the H3K27me3 levels in ripening‐related genes in tomato. New Phytologist 227(2): 485–497. https://doi.org/10.1111/nph.16550.
26. Masoso, F., O. A.,Zingwari, M.,Mutetwa, W.Zendera .2020. Effect of different chemical fertilizers and application rate on tomato growth and yield. International Journal of Academic Research and Development, 5 (4), 119–124.
27. Melo, R.O., H.E. Prieto Martínez, B.C.P. Rocha, and E. García Junior.2022. Production and quality of Sweet Grape tomato in response to foliar calcium fertilization. Revista Ceres, 69(1), 48–54. https://doi.org/10.1590/0034-737X202269010007.
28. Ming, Y., L. Jiang, and D. Ji. 2023. Epigenetic regulation in tomato fruit ripening. Frontiers in Plant Science 14. https://doi.org/10.3389/fpls.2023.1269090
29. Mishra, S., and V. Prakash. 2018. Biochemical changes in calciumchloride treated Hisar Arun (Local) and Kashi Vishesh (Hybrid) cultivars of Tomato fruit. Current Agriculture Research Journal 6(3): 395–406. https://doi.org/10.12944/carj.6.3.19.
30. Mohnen, D. 2008. Pectin structure and biosynthesis. Current Opinion in Plant Biology 11(3): 266–277. https://doi.org/10.1016/j.pbi.2008.03.006.
31. Mu, Q., Z. Huang, M. Chakrabarti, E. Berenguer, X. Liu, et al. 2017. Fruit weight is controlled by Cell Size Regulator encoding a novel protein that is expressed in maturing tomato fruits. 13(8): e1006930–e1006930. doi: https://doi.org/10.1371/journal.pgen.1006930.
32. Nie, H., Y. Shi, X. Geng, and G. Xing. 2022. CRISRP/Cas9-Mediated Targeted Mutagenesis of Tomato Polygalacturonase Gene (SlPG) Delays Fruit Softening. Frontiers in Plant Science 13.
doi: https://doi.org/10.3389/fpls.2022.729128
33. Obomighie, I., I.J. Prentice, P. Lewin-Jones, F. Bachtiger, N. Ramsay, et al. 2025. Understanding pectin cross-linking in plant cell walls. Communications Biology 8(1). https://doi.org/10.1038/s42003-025-07495-0.
34. Olaniyi, J., W. Akanbi, T. Adejumo, and O. Akande. 2010. Growth, fruit yield and nutritional quality of tomato varieties. African Journal of Food Science 4(6): 398–402. https://academicjournals.org/article/article1380726269_Olaniyi%20et%20al.pdf.
35. Quinet, M., T. Angosto, F.J. Yuste Lisbona, R. Blanchard-Gros, S. Bigot, et al. 2019. Tomato Fruit Development and Metabolism.Frontiers in Plant Science 10. doi: https://doi.org/10.3389/fpls.2019.01554.
36. Patel, B., R. Sutar, S. Khanbarad, and V. Darji. 2016. Effect of different precooling techniques on the storage behavior of tomato fruits at low and ambient temperatures. Vegetable Science 43(2): 184–189.
37. Polwaththa, K.D.M., and Y.A. Amarasinghe. 2024. * Corresponding author: AA Yasarathna Amarasinghe Optimizing calcium application strategies to enhance fruit quality in tomato (Lycopersicon esculentum (L.) Mill). International Journal of Science and Research Archive 13(02): 596–602. https://doi.org/10.30574/ijsra.2024.13.2.2188.
38. Prado, R.M. 2021. 2021. Calcium. Mineral nutrition of tropical plants (pp. 149–164). Springer. Springer eBooks: 149–164. https://doi. org/10.1007/978-3-030-71262-4_8.
39. Qin, Y., A. Gong, X. Liu, N. Li, T. Ji, et al. 2024. Testing a Simulation Model for the Response of Tomato Fruit Quality Formation to Temperature and Light in Solar Greenhouses. Plants 13(12): 1662. https://doi.org/10.3390/plants13121662.
40. Ranjbar, S., M. Rahemi, and A. Ramezanian. 2018. Comparison of nano calcium and calcium chloride spray on postharvest quality and cell wall enzymes activity in apple cv. Red Delicious. Scientia Horticulturae 240: 57–64. https://doi.org/10.1016/j.scienta.2018.05.035.
41. Ren, H., Q. Zhao, Y. Feng, P. Tang, Y. Wang, et al. 2023. Gene-specific silencing of SlPL16, a pectate lyase coding gene, extends the shelf life of tomato fruit. Postharvest Biology and Technology 201: 112368–112368. https://doi.org/10.1016/j.postharvbio.2023.112368.
42. Rosales, M.A., L.M. Cervilla, J. J. Ríos, B. Blasco, E. Sánchez-Rodríguez, et al. 2010. Environmental conditions affect pectin solubilization in cherry tomato fruits grown in two experimental Mediterranean greenhouses. Environmental and Experimental Botany 67(2): 320–327. https://doi.org/10.1016/j.envexpbot.2009.07.011.
43. Santhosh, S.S., T. Chitdeshwari, and K. Chinnasamy. 2023. Calcium influences biochemical and antioxidant enzymatic activities in tomato fruits during storage. Journal of Applied Biology & Biotechnology. https://doi.org/10.7324/jabb.2023.110216.
44. Saurabh, S., A.S. Vidyarthi, and D. Prasad. 2014. RNA interference: concept to reality in crop improvement. Planta 239(3): 543–564. doi: https://doi.org/10.1007/s00425-013-2019-5
45. Savary, S., L. Willocquet, S. J. Pethybridge, P. Esker, N. McRoberts, and A.Nelson .2019 . The global burden of pathogens and pests on major food crops. Nature ecology & evolution, 3(3), 430-439..
46. Sena, J.P., S. Silva, F. Freire, G. Barbosa, and H. Lucena. 2024. Calcium fertilization strategy on mango physiological characteristics and yield. Pesquisa Agropecuária Tropical 54.
https://doi.org/10.1590/1983-40632024v5476919.
47. Shehata, S.A., S.Z. Abdelrahman, M.M.A. Megahed, E.A. Abdeldaym, M.M. El-Mogy, et al. 2021. Extending Shelf Life and Maintaining Quality of Tomato Fruit by Calcium Chloride, Hydrogen Peroxide, Chitosan, and Ozonated Water. Horticulturae 7(9): 309. https://doi.org/10.3390/horticulturae7090309.
48. Shi, Y., B.-J. Li, D. Grierson, and K.-S. Chen. 2023b. Insights into cell wall changes during fruit softening from transgenic and naturally occurring mutants. Plant physiology 192(3): 1671–1683. https://doi.org/10.1093/plphys/kiad128.
49. Souza, J.M.A., S. Leonel, M. Leonel, E.L. Garcia, L.R. Ribeiro, et al. 2023. Calcium Nutrition in Fig Orchards Enhance Fruit Quality at Harvest and Storage. Horticulturae 9(1): 123. https://doi.org/10.3390/horticulturae9010123.
50. Tang, D., P. Gallusci, and Z. Lang. 2020. Fruit development and epigenetic modifications. New Phytologist 228(3): 839–844. doi: https://doi.org/10.1111/nph.16724.
51. Thor, K. 2019. Calcium—Nutrient and Messenger. Frontiers in Plant Science 10. https://doi.org/10.3389/fpls.2019.00440
52. Uluisik, S., N.H. Chapman, R. Smith, M. Poole, G. Adams, et al. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology 34(9): 950–952. https://doi.org/10.1038/nbt.3602.
53. Voragen, A.G.J., G.-J. Coenen, R.P. Verhoef, and H.A. Schols. 2009 . Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry 20(2): 263–275. https://doi.org/10.1007/s11224-009-9442-z.
54. Wang, D., N.H. Samsulrizal, C. Yan, N.S. Allcock, J. Craigon, et al. 2019. Characterization of CRISPR Mutants Targeting Genes Modulating Pectin Degradation in Ripening Tomato. Plant Physiology 179(2): 544–557. https://doi.org/10.1104/pp.18.01187.
55. Wang, D., and G. B. Seymour. 2022. Molecular and biochemical basis of softening in tomato. Molecular Horticulture 2(1). https://doi.org/10.1186/s43897-022-00026-z.
56. William, H. 1980. Official methods of analysis of the Association of Official Analytical Chemists. 13th ed.
57. Wormit, A., and B. Usadel. 2018. The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs). International Journal of Molecular Sciences 19(10): 2878. https://doi.org/10.3390/ijms19102878.
58. Wu, Y., X. Yang, X. Wang, L. Yan, X. Hu, et al. 2023. Effect of Foliar Calcium Fertilization on Fruit Quality, Cell Wall Enzyme Activity and Expression of Key Genes in Chinese Cherry. International Journal of Fruit Science 23(1): 200–216. doi: https://doi.org/10.1080/15538362.2023.2265656.
59. Xu, C., K.L. Liberatore, C.A. MacAlister, Z. Huang, Y.-H. Chu, et al. 2015. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nature Genetics 47(7): 784– 792. https://doi.org/10.1038/ng.3309
60. Xu, Z., J. Dai, T. Kang, K. Shah, Q. Li, et al. 2022. PpePL1 and PpePL15 Are the Core Members of the Pectate Lyase Gene Family Involved in Peach Fruit Ripening and Softening. Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.844055.
61. Yang, L., W. Huang, F. Xiong, Z. Xian, D. Su, et al. 2017. Silencing of SlPL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnology Journal 15(12): 1544–1555.
https://doi.org/10.1111/pbi.12737.
62. Yang, Y., K. Tang, T.U. Datsenka, W. Liu, S. Lv, et al. 2019. Critical function of DNA methyltransferase 1 in tomato development and regulation of the DNA methylome and transcriptome. Journal of Integrative Plant Biology 61(12): 1224–1242.
doi: https://doi.org/10.1111/jipb.12778.
63. Zhong W, M Zhao, B Liu, C Zou, Y Sun, G Wu, Q Zhang, G Jin, Z Jin, D Chadwick, and X Chen. 2020. Integrated systematic approach increase greenhouse tomato yield and reduce environmental Journal of Environmental Management, 266, 110569. https://doi.org/10.1016/j.jenvman.2020.110569
64. Zhang, J., M. Du, G. Liu, F. Ma, and Z. Bao. 2024. Lignin Sulfonate-Chelated Calcium Improves Tomato Plant Development and Fruit Quality by Promoting Ca2+ Uptake and Transport. Horticulturae 10(12): 1328–1328. https: //doi.org/10.3390/horticulturae10121328
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.