DIETARY ROSEMARY SUPPLEMENTATION AND ITS INFLUENCE ON SOME SEMEN AND BLOOD BIOCHEMICAL TRAITS OF HOLSTEIN BULLS
DOI:
https://doi.org/10.36103/1z2y1n67Keywords:
Rosmarinus officinalis, phenols, sperm, serum, climate change, sustainable production.Abstract
This study investigated supplementing dried rosemary leaves to the diet of some semen, as well as blood biochemical traits in Holstein bulls. The eight bulls were divided equally into two groups (4bull/group). Bulls' in the first group were fed a diet without additives (control group). The bulls in the second group were fed a diet supplemented with 250mg rosemary per bull daily for 12 weeks, preceded by a two-week preliminary period. We detected some of the rosemary's active components. The semen was collected and evaluated weekly for 12 weeks. The serum concentrations of glucose, urea, aspartate, and alanine transaminase were determined. The active components analysis of rosemary revealed it contains phenolics (Gallic acid), flavonoids (Luteolin, Quercetin, Rutin, Kaempferol, Tannic acid, and Epicatechine), saponins, and vitamins (A, E, and C). The results revealed higher (P≤0.05) mass activity, motility, live sperm, and normal morphology of sperms in the rosemary group than in the control group. The rosemary group recorded a lower (P≤0.05) semen volume, head sperm and total abnormalities, glucose, and urea than the control group. In conclusion, the active components, especially flavonoids and phenolics in rosemary, may improve insulin sensitivity by testis to take glucose, which somewhat ameliorates the semen quality of Holstein bulls and overcomes some climate change influences on sustainable consumption and production.
References
1. Abdulkareem, T. A. 2013. Some hematological and blood biochemical profile of Iraqi riverine buffaloes (Bubalus bubalis) during different gestation periods. Journal of Buffalo Science, 2013, 2, 78-84. http://dx.doi.org/10.6000/1927-520X.2013.02.02
2. Abdulkareem, T. A., S.M. Eidan, Shubber, A M.H., F.F. Ibrahim, M.D. Ali, and O.A. Mohammed.2020. Reference Physiological Values in Different Animal Species. Iraqi Media Network.pp:28-29.
3.AL-Gebouri, F. G. and S.M. Eidan. 2024a. Effect of season on metabolites and semen traits of bulls. Iraqi Journal of Agricultural Sciences,55(4), (In press)
4. AL-Gebouri, F. G. and S.M. Eidan. 2024b. Metabolites and semen characteristics in different bulls fertility. Iraqi Journal of Agricultural Sciences,55(Special Issue):206-216. https://doi.org/10.36103/ijas.v55iSpecial.1899
5. Alkumait, M.H.M.S., M.M. Abdul-Aziz, and M. H. Nima.2020. The effect of glutathione versus co-enzyme Q10 on male infertility original Study. Medico-legal Update, 20(1),409-414. https://doi.1037506/v20/il/2020/mlu/194360
6.AL-Nuaimi, A.J. and T.A. Abdulkareem. 2020. Effect of adding Olea europaea and Rosmarinus officinalis aqueous extracts and calcium chloride to Tris extender on post-cryopreservative sperms cell individual motility and live sperm percentage for low semen quality of Holstein bulls. Biochem. Cell. Arch., 20(1), 493-498. https://doi.10.35124/bca.2020.20.1.493
7.AL-Nuaimi, A. J., T. A. Abdulkareem, F.F. Ibrahim, Z.A. Humade, and F.A. Hussein. 2020. Effect of adding Olea europaea and Rosmarinus officinalis aqueous extracts and calcium chloride to soybean lecithin extender on post-cryopreservative sperms abnormality percentage for low semen quality of Holstein bulls. Biochem. Cell. Arch., 20(1), 519-524. https://doi.10.35124/bca.2020.20.1.519
8.Al-Saedi, A. J. A., T. A. Abdulkareem. 2022.Comparison of semen quality for three lines of Holstein bulls: 1. some immediate and microscopic characteristics. Iraqi Journal of Agricultural Sciences,53(4), 752-759. https://doi.org/10.36103/ijas.v53i4.1585
9.Alwaeli, S.N. and S.M. Eidan. 2024. The Effect of Sil-Select and Swim-Down Techniques with Antioxidant Added to Diluent on Semen Quality of Iraqi Buffalo Bulls. IOP Conf. Ser.: Earth and Environ.Sci., 1302, 012050.
https://doi.10.1088/1755-1315/1302/1/012050
10.Alwaeli, S.N. and S.M. Eidan. 2023. Effect of glass wool and sephadex sperm separation techniques on improving the poor quality semen of Iraqi buffalo bulls.IOP Conf. Ser.: Earth and Environ.Sci.,1262, 072003. https:/doi:10.1088/1755-1315/1262/7/072003
11. Alexandratos, N. and J. Bruinsma. 2012. World agriculture towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome, FAO.
12. Ayaz, N.O.2012. Antidiabetic and renoprotective effects of water extract of Rosmarinus officinalis in streptozotocin-induced diabetic rat. Afr. J. Pharm. Pharmacol. 6(37), 2664-2669. https://doi.10.5897/AJPP12.319
13.Bianchin, M., D. Pereira, J. F. Almeida, C. Moura, R.S. Pinheiro, L. F. S. Heldt, C. W. I. Haminiuk, and S. T. Carpes. 2020.Antioxidant properties of lyophilized rosemary and sage extracts and its effect to prevent lipid oxidation in poultry Pátê. Molecules, 25, 5160. https://doi.org/10.3390/molecules25215160
14.Bitsie, B., A.M. Osorio, D.D. Henry, B.C. Silva, L.A. Godoi, and C. Supapong, T. Brand, and J.P. Schoonmaker.2022. Enteric methane emissions, growth, and carcass characteristics of feedlot steers fed a garlic- and citrus-based feed additive in diets with three different forage concentrations. J. Anim. Sci., 100(5), 1-11. https://doi.10.1093/jas/skac139
15.Cizauskaite, U., L. Ivanauskas, V. Jakštas, R. Marksiene, L. Jonaitiene, and J. Bernatoniene. 2016. Rosmarinus officinalis L. extract and some of its active ingredients as potential emulsion stabilizers: a new approach to the formation of multiple (W/O/W) emulsion. Pharm Dev Technol. 21(6):716-24. https://doi.10.3109/10837450.2015.1048554
16. Daghigh-Kia H, R. O. karaji, A. Hoseinkhani, and F. Ashrafi. 2014. Effect of rosemary (Rosmarinus officinalis) extracts and glutathione antioxidant on bull semen quality after cryopreservation. Spanish J .Agric. Res., 12, 98-105. https://doi.org/10.5424/sjar/2014121-4486
17. Den Hartogh, D.J., F. Vlavcheski, and E. Tsiani. 2023. Muscle cell insulin resistance is attenuated by rosmarinic acid: elucidating the mechanisms involved. Int. J. Mol. Sci. 24, 5094. https://doi.org/10.3390/ijms24065094
18.de Oliveira, J. R., S. E. A. Camargo, and L. D. de Oliveira. 2019. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. A review. J. Biomed. Sci., 26: 5. https://doi:10.1186/s12929-019-0499-8
19.Eidan, S.M. and S. A. Khudhir. 2023. Association between ATP1A1 gene polymorphisms with semen characteristics in bulls. Iraqi Journal of Agricultural Sciences, 54(2) ,330-337. https://doi.org/10.36103/ijas.v54i2.1706
20.El-Naggar, S.A., I. B. Abdel-Farid, O. M. Germoush, H. A. Elgebaly, and A. A. Alm-Eldeen. 2016. Efficacy of Rosmarinus officinalis leaves extract against cyclophosphamide-induced hepatotoxicity, Pharmaceutical Biology, 54(10): 2007-2016.
21.Hook, S. E., M. A. Steele, K. S. Northwood, A. D. Wright, and B. W.McBride. 2011. Impact of high-concentrate feeding and low rumi nal pH on methanogens and protozoa in the rumen of dairy cows. Microb. Ecol. 62:94–105.
22.Hussein, A.K. S. S. Ibrahim, S. M. Eidan, and T. A. Abdulkareem. 2017. Effect of dietary flaxseed and sesame seed supplementation on plasma lipid profile of Awassi lambs. Al-Anbar JVS, 10(1), 123-130.
23.Jayanegara, A., Leiber, and F., Kreuzer, M. 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr., 96(3):365-375. https://doi:10.1111/j.1439-0396.2011.01172.x
24.Karim, A. M. H. K. Al-Waith, and S. M. Al-Jubori. 2023. Effect of adding calcium propionate on productive performance of Iraqi buffaloes. IOP Conf. Ser.: Earth Environ. Sci. 1262, 072058. https://doi.org/10.1088/1755-1315/1262/7/072058
25. Kong, F. S. Wang, Z. Cao, Y. Wang, S. Li, and W. Wang. 2022a. In vitro fermentation and degradation characteristics of rosemary extract in total mixed ration of lactating dairy cows. Fermentation, 8(9), 461. https://doi.org/10.3390/fermentation8090461
26.Kong, F., S. Wang, D. Dai, Z. Cao, Y. Wang, S. Li, and W. Wang. 2022b. Preliminary investigation of the effects of rosemary extract supplementation on milk production and rumen fermentation in high-producing dairy cows. Antioxidants, 11, 1715. https://doi.org/10.3390/antiox11091715
27.Koleva, I.I., T.A van Beek, J.P. Linssen, A. de Groot, and L.N. Evstatieva. 2002. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal., 13(1),8-17. https://doi.10.1002/pca.611
28.Labban, L., U.E.S. Mustafa, and Y.M. Ibrahim. 2014. The effects of rosemary (Rosmarinus officinalis) leaves powder on glucose level, lipid profile and lipid perodoxation. Int. J. Clin. Med., 5, 297–304. https://doi:10.4236/ijcm.2014.56044
29.Mackie, R.I., H. Kim, N.K. Kim, and I. Cann.2024. Hydrogen production and hydrogen utilization in the rumen: key to mitigating enteric methane production. Anim. Biosci., 37(2),323-336. https://doi:10.5713/ab.23.0294
30.Mahmood, N.M ., SM. M. Eidan, R.I. Khalil, F. F. Ibrahim, W. Y. Lateef, and T. A. Shihab.2019b. . Effect of melatonin hormone on long-term cryopreserved semen: 1-Individual motility, live sperms and plasma membrane integrity of sperm. Biochem. Cell. Arch. Vol. 19(1),1423-1428. https://doi:10.35124/bca.2019.19.1.1423
31.Mena, P., M. Cirlini, M. Tassotti, K.A. Herrlinger, C. Dall'Asta, and D. Del Rio.2016. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules. 21(11),1576. https://doi:10.3390/molecules21111576
32.Morgavi, D.P. G. Cantalapiedra-Hijar, M. Eugène , C. Martin , P. Noziere, M. Popova , I. Ortigues-Marty , R. Muñoz-Tamayo, and E.M. Ungerfeld. 2023. Reducing enteric methane emissions improves energy metabolism in livestock: is the tenet right?. Animal, 17, 100830. https://doi:10.1016/j.animal.2023.100830
33.Mursaliyeva, V.K., B.T. Sarsenbek, G.T. Dzhakibaeva, T.M. Mukhanov, and R. Mammadov. 2023. Total content of saponins, phenols and flavonoids and antioxidant and antimicrobial activity of in vitro culture of Allochrusa gypsophiloides
(Regel) schischk compared to wild plants. Plants (Basel). 12(20):3521. https://doi:10.3390/plants12203521
34.Musa, K. S. and T. A. Abdulkareem. 2023.Protein profiles in seminal plasma of Iraqi buffalo bulls(Bubalus bubalis) associated with fresh and cryopreserved semen quality. IOP Conf. Ser.: Earth Environ. Sci. 1262, 072095.
https://doi:10.1088/1755-1315/1262/7/072095
35. Musa, K. S. and T. A. Abdulkareem. 2024. Some biochemical attributes in seminal plasma of Iraqi buffalo bulls and their relation to the semen quality. Iraqi Journal of Agricultural Sciences, 55(1):402-412. https://doi.org/10.36103/nrfkex70
36.Naimi, M., F. Vlavcheski, B. Murphy, T. Hudlicky, and E. Tsiani. 2017. Carnosic acid as a component of rosemary extract stimulates skeletal muscle cell glucose uptake via AMPK activation. Clin. Exp. Pharmacol. Physiol., 44(1),94-102.
https://doi.10.1111/1440-1681.12674
37. Nsaif, Z. M. and S. M. Eidan 2023 Effect of melatonin implantation on sexual behavior and some of semen quality of Iraqi buffalo bulls.IOP Conf. Ser.: Earth Environ. Sci., 1262, 072013. https://doi:10.1088/1755-1315/1262/7/072013
38.Rahbardar, G. M. and H. Hosseinzadeh.2020. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J. Basic. Med. Sci., 23(9),1100-1112. https://doi.10.22038/ijbms.2020.45269.10541
39.38.Salih, H.T. and A. H.Hamed.2021. Extraction and determination of tannic acid in rosemary, anise, and cinnamon by reversal phase RP-HPLC. Eurasian Chem. Commun., 4, 94-102.
https://doi.org/10.22034/ecc.2022.318961.1276
40.Sierzant, K., M. Korzeniowska, J. Orda, A. Wojdyło, F. Gondret, and T. Półbrat. 2021. The Effect of rosemary (Rosmarinus officinalis) and blackcurrant extracts (Ribes nigrum) supplementation on performance indices and oxidative stability of chicken broiler meat. Animals, 11(4), 1155. https://doi.org/10.3390/ani11041155
41.Shamshoum, H., F. Vlavcheski, R.E.K. MacPherson, and E. Tsiani. 2021. Rosemary extract activates AMPK, inhibits mTOR and attenuates the high glucose and high insulin-induced muscle cell insulin resistance. Appl. Physiol. Nutr. Metab., 46(7): 819-827. https://doi.org/10.1139/apnm-2020-0592
42.Srivastava, N. and M. Pande.2017. Protocols in Semen Biology (Comparing Assays). Springer Nature Singapore Pte Ltd. https://doi.10.1007/978-981-10-5200-2
43.Sultan, O. A. A. and S. M. Eidan. 2020a. Association of CD9 gene with semen quality of Holstein bulls: 2. Fresh semen. Biochem. Cell. Arch., 20 (1), 2721-2725. https://doi.10.35124/bca.2020.20.1.2721
44.Sun, X,, L. Cheng, A. Jonker, S. Munidasa, and D. Pacheco. 2022. A Review: Plant carbohydrate types—the potential impact on ruminant methane emissions. Front. Vet. Sci., 9:880115. https://doi.org/10.3389/fvets.2022.880115
45.44.Takahashi, T., T. Tabuchi, Y. Tamaki, K. Kosaka, Y. Takikawa, and T. Satoh. 2009.Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3T3-L1 cells through induction of phase 2 enzymes and activation of glutathione metabolism. Biochem. Biophys. Res. Commun., 382, 549–554. https://doi.10.1016/j.bbrc.2009.03.059
46.Taniguchi, C.M., B. Emanuelli, and C.R. Kahn. 2006Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol., 7(2):85-96. https://doi:10.1038/nrm1837
47.Tapio, I., T.J. Snelling, F. Strozzi, and R.J. Wallace. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol., 8,7-19. https://doi.10.1186/s40104-017-0141-0
48.Tavafi, M, H. Ahmadvand, and A. Khalatbari. 2011. Rosmarinic acid ameliorates diabetic nephropathy in uninephrectomized diabetic rats. Iran. J. Basic Med. Sci.,14, 275-283. https://doi.10.22038/IJBMS.2011.5006
49.Tietz, N.W. 1995.Clinical Guide to Laboratory Tests, 3rd edn. Philadelphia, W.B. Saunders.
50.49. Wang, Z., L. Yin, L. Liu, X. Lan, J. He, F. Wan, W. Shen, S. Tang, Z. Tan, and Y. Yang. Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front. Vet. Sci., 9,1004841. https://doi.10.3389/fvets.2022.1004841.
51.Weimer, P.J. 2022. Degradation of cellulose and hemicellulose by ruminal microorganisms. 10(12),2345. https://doi.10.3390/microorganisms10122345
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.