OUTBREAK OF TOBAMOVIRUSES AND POTEXVIRUSES ASSOCIATED WITH DISEASE EPIDEMICS IN TOMATO PRODUCTION AREA OF IRAQ
DOI:
https://doi.org/10.36103/bnvh7n83Keywords:
ToBRFV; PepMV; CymMV; ORSV; CGMMV; PepMV.Abstract
This study was initiated to examine the tomato-infecting viruses belonging to the Tobamovirus and Potexvirus genera in Iraq. Field observations and surveys were carried out for three successive cropping seasons (2020/21 to 2022/23) in selected tomato production areas. The purpose was to identify the main viruses associated with tomato epidemics and assess the impact of different tomato cultivars on disease occurrence. A total of 700 tomato leaf samples were collected from seven governorates (Baghdad, Diyala, Babylon, Najaf, Kerbala, Nasiriya, and Basrah) and tested using pathogen-specific immunostrip kits. The survey showed a presence of Tomato brown rugose fruit virus (ToBRFV), Tobacco mosaic virus (TMV), Pepper mild mottle virus (PMMoV), Cymbidium mosaic virus (CymMV), Odontoglossum ringspot virus (ORSV), Cucumber green mottle mosaic virus (CGMMV), Pepino mosaic virus (PepMV) and Potato virus X (PVX) in tomato fields in Iraq. ToBRFV secured the highest relative incidence in tomato fields (7 governorates) followed by PepMV and CymMV and PMMoV (6 out of 7 governorates) and CGMMV, TMV (5 governorates), and PVX (3 governorates). The least was ORSV (only in Basrah). To our knowledge, this is the first comprehensive survey investigating Tobamovirus and Potexvirus on tomato fields in Iraq and the first report of ToBRFV, PMMoV, CymMV, ORSV, CGMMV and PepMV infecting tomato crops in Iraq.
References
1. Abbas, M. and S. Saadedin. 2018. Quantitative detection of CAMV-35S promoter and T-NOS terminator in genetic modified tomato from Iraqi markets. The Iraqi Journal of Agricultural Science, 49(5): 913. https://doi.org/10.36103/ijas.v49i5.54
2. Adhab, M., and N. Alkuwaiti. 2022. Geminiviruses Occurrence in the Middle East and their Impact on Agriculture in Iraq. In Geminivirus: Detection, Diagnosis and Management (pp. 171-185). Academic Press. https://doi.org/10.1016/B978-0-323-90587-9.00021-3
3. Adhab, M., N. Al-Kuwaiti, and R. Al-Ani. 2021. Biodiversity and Occurrence of Plant Viruses Over Four Decades: Case Study for Iraq. In 2021 Third International Sustainability and Resilience Conference: Climate Change (pp. 159-163). IEEE. https://doi.org/10.1109/IEEECONF53624.2021.9668128
4. Adhab, M., C. Angel, S. Leisner, and J. Schoelz. 2018. The P1 gene of Cauliflower mosaic virus is responsible for breaking resistance in Arabidopsis thaliana ecotype Enkheim (En-2). Virology, 523: 15-21. https://doi.org/10.1016/j.virol.2018.07.016
5. Adhab, M., C. Angel, A. Rodriguez, M. Fereidouni, L. Király, K. Scheets, and J. Schoelz. 2019. Tracing the lineage of two traits associated with the coat protein of the Tombusviridae: silencing suppression and HR elicitation in Nicotiana species. Viruses, 11(7): 588. https://doi.org/10.3390/v11070588
6. Adhab, M., Y. Zhang, and J. Schoelz. 2023. Transient expression of cauliflower mosaic virus (CaMV) P6-GFP complements a defective CaMV replicon to facilitate viral gene expression, replication and virion formation. Virology, 587: 109854. https://doi.org/10.1016/j.virol.2023.109854
7. Aguirre-Rojas, L., L. Khalaf and C. Smith 2019. Barley varieties stoneham and sydney exhibit mild antibiosis and antixenosis resistance to the wheat curl mite, Aceria tosichella (Keifer). Agronomy. 9(11) 748. https://doi.org/10.3390/agronomy9110748
8. Alaa El-Den, H., G. Abd El-Wahab, and S. Masoud. 2022. Using salicylic acid, folic acid and/or mancozeb in controlling tomato early blight biotic stress and their effects on growth, yield, fruit quality, and stress-related enzymes. Iraqi Journal of Agricultural Sciences, 53(6): 1548-1559. https://doi.org/10.36103/ijas.v53i6.1670
9. Alcaide, C. and M. Aranda. 2021. Determinants of persistent patterns of Pepino mosaic virus mixed infections. Frontiers in Microbiology, 12: 694492. https://doi.org/10.3389/fmicb.2021.694492
10. Al-Murad, N., N. Qasim, N. Al-Murad and H. Abdullah. 2012.The effect of mixed infection by tomato mosaic virus (ToMV) and fusarial wilt on tomato. Journal of Tikrit University for Agriculture Sciences 12(1): 50-56. (In Arabic). https://www.iasj.net/iasj/download/f88edb2559162635
11. AlShabar, S., A. Timm, and L. Khalaf. 2021. Population Variation of Polyphagotarso-nemus latus (Banks) in Baghdad Province, Central Iraq. In 2021 Third International Sustainability and Resilience Conference: Climate Change (pp. 138-141). IEEE. https://doi.org/10.1109/IEEECONF53624.2021.9668098
12. Anwar, S., F. Mahmood, N. Tahir, and G. Salih. 2022. Secondary compounds released by rhizospheric bacteria exhibit fungistatic effects against phytopathogenic fungus. Iraqi Journal of Agricultural Sciences, 53(5): 1174-1183. https://doi.org/10.36103/ijas.v53i5.1631
13. Bananej, K., T. Keshavarz, J. da Silva, and F. Zerbini. 2023. Isolation and whole-genome sequencing of tomato brown rugose fruit virus from pepper in Iran. Journal of Plant Diseases and Protection, 1-7. https://doi.org/10.1007/s41348-023-00813-w
14. Birwari, M. and S. Abd AL-Qadir. 2022. Effect of some biological and chemical pesticides in controlling Tuta absoluta of tomato. Iraqi Journal of Agricultural Sciences, 53(5): 1167-1173. https://doi.org/10.36103/ijas.v53i5.1630
15. Dumra, N., K. Rolania, L.K. Khalaf, S.S. Yadav, S. Mandhania, Y.K. Sharma, U. Kumar, A.M. Ahmed, S.M. Popescu, and A. Choudhary. 2024. Comparative evaluation of sublethal doses of different insecticides on the ovipositional behavior of whitefly (Bemisia tabaci) in Brinjal. Journal of King Saud University-Science, 36(2), 103070. https://doi.org/10.1016/j.jksus.2023.103070
16. FAOSTAT.2022.https://www.fao.org/faostat/en/#home
17. Jones, R. 2016. Future scenarios for plant virus pathogens as climate change progresses. Adv. Virus Res., 95: 87–147. https://doi.org/10.1016/bs.aivir.2016.02.004
18. Just, K., W. Leke, M. Sattar, A. Luik and A. Kvarnheden. 2014. Detection of tomato yellow leaf curl virus in imported tomato fruit in northern Europe. Plant Pathol. 63: 1454–1460. https://doi.org/10.1111/ppa.12205
19. Khalaf, L., and M. Adhab, L. Aguirre-Rojas, and A. Timm. 2023. Occurrences of wheat curl mite Aceria tosichella Keifer 1969 (Eriophyidae) and the associated viruses, (WSMV, HPWMoV, TriMV) in Iraq. Iraqi Journal of Agricultural Sciences, 54(3): 837-849. https://doi.org/10.36103/ijas.v54i3.1767
20. Khalaf, L., Y. Zhang, and M. Adhab. 2023. Grapevine vein-clearing virus is mealybug-borne but not mealybug-transmitted. Iraqi Journal of Agricultural Sciences, 54(5): 1469-1477. https://doi.org/10.36103/ijas.v54i5.1846
21. Kumar, S. and S. Maurya. 2021. Innovative diagnostic tools for plant pathogenic virus. In Innovative Approaches in Diagnosis and Management of Crop Diseases (pp. 101-165). Apple Academic Press. https://doi.org/10.1201/9781003187608-5
22. Lanfermeijer, F., J. Warmink, J. Hille. 2005. The products of the broken Tm-2 and the durable Tm-22 resistance genes from tomato dier in four amino acids. J. Exp. Bot., 56: 2925–2933. https://doi.org/10.1093/jxb/eri288
23. Lefkowitz, E., D. Dempsey, R. Hendrickson, R. Orton, S. Siddell and D. Smith, 2018. Virus taxonomy: the database of the International Committee on taxonomy of Viruses (ICTV). Nucleic Acids Research 46, D708eD717. https://doi.org/10.1093/nar/gkx932
24. Levitzky, N., E. Smith, O. Lachman, N. Luria, Y. Mizrahi, H. Bakelman, N. Sela, O. Laskar, E. Milrot and A. Dombrovsky. 2019. The bumblebee Bombus terrestris carries a primary inoculum of Tomato brown rugose fruit virus contributing to disease spread in tomatoes. PLoS One 14: e0210871. https://doi.org/10.1371/journal.pone.0210871
25. Ling, K., T. Tian, S. Gurung, R. Salati and A. Gilliard. 2019. First report of tomato brown rugose fruit virus infecting greenhouse tomato in the United States. Plant Dis. 103: 1439. https://doi.org/10.1094/PDIS-11-18-1959-PDN
26. Luria, N., E. Smith, V. Reingold, I. Bekelman, M. Lapidot, I. Levin, N. Elad, Y. Tam, N. Sela, and A. Abu-Ras. 2017. A new Israeli tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS ONE, 12: e0170429. https://doi.org/10.1371/journal.pone.0170429
27. Massumi, H., M. Shaabanian, A. Pour, J. Heydarnejad and H. Rahimian. 2009. Incidence of viruses infecting tomato and their natural hosts in the southeast and central regions of Iran. Plant Disease, 93(1): 67-72. https://doi.org/10.1094/PDIS-93-1-0067
28. Mohammed, S., M. Al Khazeli and B. Al-Badri. 2024. Evaluation of the small farmers fund in the agricultural initiative in Iraq through the collection efficiency of loans for the period 2009–2018. Iraqi Journal of Agricultural Sciences, 55(1): 542-551. https://doi.org/10.36103/8508sa16
29. Randa-Zelyüt, F., A. Fox and A. Karanfil. 2023. Population genetic dynamics of southern tomato virus from Turkey. Journal of Plant Pathology 105: 211-224. https://doi.org/10.1007/s42161-022-01263-3
30. Rojas, M. and R. Gilbertson. 2008. Emerging plant viruses: A diversity of mechanisms and opportunities. In Plant Virus Evolution; Roossinck, M.J., Ed.; Springer: Berlin/Heidelberg, Germany, pp. 27–51. https://doi.org/10.1007/978-3-540-75763-4_3
31. Shipp, J., R. Buitenhuis, L. Stobbs, K. Wang, W. Kim and G. Ferguson. 2008. Vectoring of Pepino mosaic virus by bumblebees in tomato greenhouses. Annals of Applied Biology 153: 149e155. https://doi.org/10.1111/j.1744-7348.2008.00245.x
32. Schoelz, J.E. and M. Adhab. 2021. Caulimoviruses (Caulimoviridae). In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Academic Press: Amsterdam, The Netherlands; pp. 313–321. https://doi.org/10.1016/B978-0-12-809633-8.21300-9
33. Sial, M. U., T. Farooq, L. K. Khalaf, S. Rahman, M. Asad, and B. A. Paray. 2023. Two-step method for rapid isolation of genomic DNA and validation of R81T insecticide resistance mutation in Myzus persicae. Saudi Journal of Biological Sciences, 30(11), p.103791. https://doi.org/10.1016/j.sjbs.2023.103791
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.