• A. A. YOUSIF
  • W. A. HASSAN




Phytochemical analysis, clove, eucalyptus, sage, thyme, postharvest infection.


This study was aimed to determine the qualitative and quantitative phenolic compounds. Results revealed that HPLC analysis identified Hydroxy derivatives of benzoic acids, hydroxy-cinnamic acids, in addition to flavonoids. The major compounds detected in clove were eugenol 32.5 mg/L, while in thyme the predominant phenol was gallic acid 35.9 mg/L. Quercetin was the greatest phenolic compound in both eucalyptus and sage 49.8 and 55.6 mg/L, respectively. Clove extract inhibited all selected pathogens entirely when applied at 20%. Subsequently, thyme extract at the same concentration inhibited the growth of B. cinerea completely. Eucalyptus extract revealed a lowest inhibition with 23.2%, 11.83%, and 7.83% after three, six, and nine days, respectively.  P. griseofulvum showed remarkable susceptibility to extracts due to 51.99% growth inhibition followed by 25.33% and 20.67% for both A. alternata and B. cinerea, respectively.


Adaramola, B. and A. Onigbinde. 2016. Effect of extraction solvent on the phenolic content, flavonoid content and antioxidant capacity of clove bud. IOSR-JPBS 11: 33-38

Arif, T.; J. D. Bhosale; N.K. umar; T. K. Mandal.; and R.S. Bendre. 2009. Natural products-antifungal agent derived from plants. J. Asian Nat. Prod. Res.11:621-638

Banani, H.; M. Marcet-Houben; A. Ballester.; P. Abbruscato.; L. Gonzalez-Candelas; T. Gabaldon and D. Spadaro. 2016. Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics17(19): 1-14

Behdani, M.; D. Pooyan and S. Abbasi. 2012. Evaluation of antifungal activity of some medicinal plant, essential oils against Botrytis cineria causal agent of postharvest apple rot, in vitro. Int. J of Agri. and Crop Sciences 4(14):1012-1016

Behiry, S.; R. Nasser; Abd M. El-Kareem; H. Ali, and M. Saleem. 2020. Mass spectroscopic analysis. MNDO quantum chemical studies and antifungal activity of essential and recovered oil constituents of lemon-scented game against three common molds. Prosses 8(3):275, DOI: 103390 pr/8030275

Bhuiyan, N.; J. Begum; N. Nandi, and N. Akter. 2010. Constituents of the essential oil from leaves and buds of clove (Syzigium caryophyllatum),” African Journal of Plant Science 4(11):451–454

Choudhury, D.; P. Dobhal; S. Srivastava; S. Soumen, and S. Kundu. 2018. Role of botanical plant extracts to control plant pathogens, a review. Indian J Agric Res 52(4):341-346

Dezsi, S.; A. S. Badarau; C. Bischin; D. C. Vodnar; R. Silaghi-Dumitrescu; R. Gheldiu; A. Mocan, and Vlase, L. 2015. Antimicrobial and antioxidant activities and phenolic profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson Leaves. Molecules 20: 4720-4734

Dyakov, Y.; V. Dzhavakhiya, and T. Kopela. 2007. Comprehensive and molecular phytopathology (1st ed) 9 Elsevier Science USA: 496 pp.

El Alami, N. and E. Soufiyan. 2019. Use of plant extracts in the control of post-harvest fungal rots in apple. J. Botanical Research 1:27-41

El-Khateeb, A.; A. Elsherbiny; K. T. Louis; M. A. Safaa and B. H. Hassan. 2013. Phytochemical analysis and antifungal activity of fruit leaves extracts on the mycelial growth of fungal plant pathogens. Plant Pathology & Microbiology 4(9) doi: 10.4172/2157-7471.1000199

Hadizadeh, I.; B. Peivastegan, and M. Kolahi. 2009. Antifungal activity of nettle (Urticadioica L.), colocynth (Citrulluscolocynthis L. Schrad), oleander (Nerium oleander L.) and konar (Ziziphusspina-christi L.) extracts on plants pathogenic fungi. Pakistan Journal of Biological Sciences 12: 58-63

Haouala, R.; R. Kanfir; A. Tarchoune; S. Hawala, and M. Beji. 2008. Larvicidal activity of Tagetes patula essential oil against three mosquit species. Bioresour Technol 96:1235-1240

Karm, I. F.A. 2019. Investigation of active compound in clove (syzygium aromaticum) extract and compared with inhibitors of growth of some types of bacteria causing food poisoning. Iraqi Journal of Agricultural Sciences 50(6):1645-1651

Koksal, E.; B. Ercan; G. İlhami; K. Mustafa; Ç. Cüneyit; C.G. Ahmet, and H. A. Saleh. 2016. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. International Journal of Food Properties 20(3): 514-525 doi: 10.1080/10942912.2016.1168438

Korsten, L. 2006. Advances in control of postharvest diseases in tropical fresh produce. Int J Technol Innovate 1(1): 48–61

Castellanos, L.M.; N.A. Olivas; J. Ayala-Soto; M. C. Carmen; M. Z. Ortegam; F. S. Sales, and L. Hernandez-Ochoa. 2020. In Vitro and In Vivo Antifungal Activity of Clove (Eugenia caryophyllata) and Pepper (Piper nigrum L.) Essential Oils and Functional Extracts Against Fusarium oxysporum and Aspergillus niger in Tomato (Solanum lycopersicum L.) International Journal of Microbiology, Article ID 1702037, 8 p

Lee, K.G. and T. Shibamoto. 2001. Antioxidant activities of volatile components isolated from Eucalyptus species. Journal of the Science of Food and Agriculture 81: 1573-1579

Lu, Y. and F. Yeap. 2002. Polyphenolics of salvia- a review. Phytochemistry 59:117-140

Magro, A. M.; M. Bastos, and A. Mexia. 2006. Efficacy of plant extract against stored products fungi. Revistalbero American de micologia 23: 176-178

Malik, A.; A. Ahmed, and N. Babita. 2016. Plant extracts in postharvest management (Diseases and spoilage) of fruits-Review. Journal of Humanities and Social Sciences 2(1):5-12.

Martinellil, F.; M. Busconi; F. Camangi; C. Fogher; A. Stefani, and L. Sebastiani. 2008. Ancient Pomoideae (Malus domestica Borkh. And(Pyrus communis L.) cultivars in “Appenino Toscano” (Tuscany, Italy): molecular (SSR) and morphological characterization. Caryologia 61: 320-331

Mocan, A.; B. Mihai; P. Anca; F. Ionel; D. Alina; L. Marcello; C. Simone; C. Cristina; M. Luigi; R. Cristian; S. Marina; Z. Gokhan; P. Ramona; B. Sabin; C. Dan, and C. Gianina. 2020. Chemical Constituents and Biologic Activities of Sage Species: A Comparison between Salvia officinalis L., S. glutinosa L. and S. transsylvanica (Schur ex Griseb. & Schenk) Schur Antioxidants 9: 480 doi:10.3390/antiox9060480

Mohamed, A.; S. Behiry; H. Ali; M. El-Hefiny; M. Salem, and N. Ashmawy. 2020. Phytochemical compounds of branches from P.halepseis oily liquid extract and S.terebinthifolius essential oils and their potential antifungal activity. Prosses 8(3):330 doi:10.33990/pr 8030440

Mohana, D. C. and K. A. Raveesha. 2007. Anti-fungal evaluation of some plant extracts against some plant pathogenic field and storage fungi. Journal of Agricultural Technology 4(1): 119-137

Obeid, B. M. and S. H. Jaber. 2018. Chemical composition and antioxidant activity of pelargonium graveolens oil. Iraqi Journal of Agricultural Sciences –1028:49(5):811- 816

Okla, M. K.; S.A. Alamri; M. Z. Salem; H. M. Ali; S. I. Behiry; R. A. Nassser, and W. Soufan. 2019. Yield, phytochemical constituents and antibacterial activity of essential oils from the leaves, twigs, branches, branch wood and branch bark of sour orange (citrus aurantium L.). Prosses 7(6): 363 doi: 10.3390/pr 7060363

Parveen, S.; A. H. Wani; M. Y. Bhat, and J.A. Koka.2016. Biological control of postharvest fungal rots of rosaceous fruits using microbial antagonists and plant extracts a review. Czech Mycol 68(1): 41–66

Raj, H. and K. Sharma. 2017. Efficacy of botanical formulations and fungicides against Botryosphaeria dothidea, causing white rot in apple (Malus × domestica Borkh.). Journal of Applied and Natural Science 9 (3): 1434 – 1439. Journal of plants 10,118 doi/ 10.3390/plants 10010118

Reuveni, M. and M. Sheglov. 2002. Effects of azoxystrobin, difenoconazole, polyoxin B (polar) and trifloxystrobin on germination and growth of Alternaria alternata and decay in red delicious apple fruit. Journal of crop protection 21:951-955

Sales, M. D. C.; H. B. Costa; P.M. Bueno; J.A. Ventura, and D. D. Meira. 2016. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac J Trop Biomed 6(1): 26-31

Salih, M. I. and F. M. K. Al Dabagh. 2021.Comparative analysis of some phenolic acids of in vitro and in vivo grown plant leaves of salvia hispanica. Iraqi Journal of Agricultural Sciences –2021:52(1):189-195

Samec, D.; E. Karalija; I. Sola; V. VujcicBok and B. Salopek-Sondi. 2021. The role of polyphenols in abiotic stress response: The influence of molecular structure a review. Journal of plants 10,118 doi:10.3390/plants 10010118

Sanzani, S. S.; L. Schena; A. Girolamo; A. Ippolito, and L. Gonzalez-candela. 2010. Characterization of genes associated with induced resistance against Penicillium expansum in apple fruit treated with quercetin. Postharvest Biol Technol 56: 1–11

Sarhan, M.A.; S. Khaled; I. Khalel, and R. Mohamed. 2013. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products 43: 827-831

Singh, Y.P. 2007. Efficacy of leaf extract and essential oils of some plant species against Penicillium expansum rot of apples. Annals of Plant Protection Sciences 15(1):135-139

Sisti, M.; M. De-Santi; D. Fratermale; P. Ninfali; and V. Scoccianti. 2008. Antifungal activity of rubus ulmifolius schott standardized in vitro culture. LWT 41:946-950

Topcu, G. 2006. Bioactive triterpenoids from salvia species. J Nat. Prod. 69 (3): 482-489.

Vesna, T.T; I. Anamaraija; S. M. Gordana; S. M. Cetkovic; J. M. Dilas, and M. Canadanovic-Brunei. 2004. HPLC analysis of phenolic acids in mountain germander (Teucrium montanum L.) extracts. Apteff 35:1-280




How to Cite