EVALUATION OF THE BIOLOGICAL EFFECT SYNTHESIZED IRON OXIDE NANOPARTICLES ON ENTEROCOCCUS FAECALIS

Authors

  • R. M. kamel
  • L. A. Yaaqoob

DOI:

https://doi.org/10.36103/ijas.v53i2.1552

Keywords:

Fe2O3 NPs, Antimicrobial activity, biosynthesis nanoparticles, biological pigment..

Abstract

This study was aimed to demonstrate the biosynthesis procedure of iron oxide nanoparticles (Fe2O3 NPs) by using prodigiosin pigment produced from environmental isolate Serratia marcescens as a reducing and stabilizing agent. Additionally, the synthesis conditions were precisely taken into consideration as a pH of 7 and a temperature of 50°C alongside a concentration of prodigiosin of 12 mg/ml with a precursor of ferric sulfate of 5 mg/50ml in deionized distilled water (DDW). Biosynthesized Fe2O3 nanoparticles have presented many applications such as catalysis, biosensing, anticancer, and biomedical, etc. The study of optimum condition for the synthesis of Fe2O3 was characterized by different techniques, such as (XRD, UV-VIS, AFM, FTIR and FE-SEM). The wavelength of biosynthesis of Fe2O3 by using UV-VIS is (284 nm), Image FE-SEM displays Spherical Fe2O3 NPs in nano-cluster form and the average volume is (35.01) nm). And the effect of Fe2O3 NPs on bacteria Enterococcus faecalis on an inhibition zone 31 mm.

References

Al-Azawi, M. T., S. M. Hadi, and C. H. Mohammed, 2019. Synthesis of silica nanoparticles via green approach by using hot aqueous extract of Thuja orientalis leaf and their effect on biofilm formation. The Iraqi Journal of Agricultural Sciences, 50, 245-255

AL-Mousawi, H. T., M. I. Al-Taee, M. N. Rasheed, and Q. N. Al-Hajjar, 2019. Molecular and nanotechnical study for antibiofilm formation and csuE gene expression activities of synthesized iron oxide nanoparticles against multidrug-resistant acinetobacter baumannii isolates. Iraqi Journal of Biotechnology, 18(2), 201-2015

Awwad, A. M., and N. M. Salem, 2012. A green and facile approach for synthesis of magnetite nanoparticles. Nanoscience and Nanotechnology, 2(6), 208-213

Chen, W. C., W. J. Yu, C. C. Chang, J. S. Chang, S. H. Huang, C. H. Chang,... and Y. H. Wei, 2013. Enhancing production of prodigiosin from Serratia marcescens C3 by statistical experimental design and porous carrier addition strategy. Biochemical Engineering Journal, 78, 93-100

Christian, P., F. Von der Kammer, M. Baalousha, and T. Hofmann, 2008. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 17(5), 326-343

Das, A. K., A. Marwal, and R. Verma, 2014. Datura inoxia leaf extract mediated one step green synthesis and characterization of magnetite (Fe3O4) nanoparticles. Research and Reviews: Journal of Pharmaceutics and Nanotechnology, 2(2), 21-24

Edwards, P. R., and W. H. Ewing, 1972. Identification of enterobacteriaceae. Identification of Enterobacteriaceae., 3rd ed pp:245.

Facklam, R. R. 1973. Comparison of several laboratory media for presumptive identification of enterococci and group streptococci. Applied microbiology, 26(2), 138-145

Forbes, B. A., D. F. Sahm, and A. S. Weissfeld, 2007. Bailey and Scotts' Diagnostic microbiology 12th. ed. St Louis, Mosby

Fortina, M. G., G. Ricci, D. Mora, and P. L. Manachini, 2004. Molecular analysis of artisanal Italian cheeses reveals Enterococcus italicus sp. nov. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1717-1721

Harwood, V. J., N. C. Delahoya, R. M. Ulrich, M. F. Kramer, J. E. Whitlock, J. R. Garey, and D. V. Lim, 2004. Molecular confirmation of Enterococcus faecalis and E. faecium from clinical, faecal and environmental sources. Letters in applied microbiology, 38(6), 476-482

Khanafari, A., M. M. Assadi, and F. A. Fakhr, 2006. Review of prodigiosin, pigmentation in Serratia marcescens. Online Journal of Biological Sciences, 6(1), 1-13

Liu, J., S. Z. Qiao, Q. H. Hu, and G. Q Lu,. 2011. Magnetic nanocomposites with mesoporous structures: synthesis and applications. small, 7(4), 425-443

Machado, I., J. Graça, H. Lopes, S. Lopes, and M. O. Pereira, 2013. Antimicrobial pressure of ciprofloxacin and gentamicin on biofilm development by an endoscope-isolated Pseudomonas aeruginosa. International Scholarly Research Notices, 2013

Mahdavi, M., M. B. Ahmad, M. J. Haron, F. Namvar, B. Nadi, M. Z. A. Rahman, and J. Amin, 2013. Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules, 18(7), 7533-7548

Mahdavi, M., F. Namvar, M. B. Ahmad, and R. Mohamad, 2013. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18(5), 5954-5964

Malega, F., I. P. Indrayana, and E. Suharyadi, 2018. Synthesis and characterization of the microstructure and functional group bond of fe3o4 nanoparticles from natural iron sand in Tobelo North Halmahera. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7(2), 13-22

Mansoori, G. A. 2005. Principles of nanotechnology: molecular-based study of condensed matter in small systems. World Scientific. pp:

Matos, R. C., N. Lapaque, L. Rigottier-Gois, L. Debarbieux, T. Meylheuc, B. Gonzalez-Zorn, and P. Serror, 2013. Enterococcus faecalis prophage dynamics and contributions to pathogenic traits. PLoS Genet, 9(6), e1003539

Mikhaylova, M., D. K. Kim, N. Bobrysheva, M. Osmolowsky, V. Semenov, T. Tsakalakos, and M. Muhammed, 2004. Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir, 20(6), 2472-2477

Mittal, A. K., Y. Chisti, and U. C. Banerjee, 2013. Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346-356

Mohanpuria, P., N. K. Rana, and S. K Yadav,. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10(3), 507-517

Nirmala, M. J., P. J. Shiny, V. I. N. I. T. A. Ernest, S. P. Das, A. Samundeeswari, A. M. I. T. A. V. A. Mukherjee, and N. Chndrasekaran, 2013. A review on safer means of nanoparticle synthesis by exploring the prolific marine ecosystem as a new thrust area in nanopharmaceutics. Int. J. Pharm. Sci, 5, 23-29

Pailleret, A., N. T. L. Hien, D. T. M. Thanh, and C. Deslouis, 2007. Surface reactivity of polypyrrole/ iron-oxide nanoparticles: electrochemical and CS-AFM investigations. Journal of Solid State Electrochemistry, 11(8), 1013-1021

Rastegari, B., H. R. Karbalaei-Heidari, S. Zeinali, and H. Sheardown, 2017. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids and Surfaces B: Biointerfaces, 158, 589-601

Shameli, K., M. B. Ahmad, A. Zamanian, P. Sangpour, P. Shabanzadeh, Y. Abdollahi, and M. Zargar, 2012. Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. International journal of nanomedicine, 7, 5603

Sheng-Nan, S., W. Chao, Z. Zan-Zan, H. Yang-Long, S. S. Venkatraman, and X. Zhi-Chuan, 2014. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physics B, 23(3), 037503

Stoimenov, P. K., R. L. Klinger, G. L. Marchin, and K. J. Klabunde, 2002. Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679-6686

Suto, M., Y. Hirota, H. Mamiya, A., Fujita, R. Kasuya, K. Tohji, and B. Jeyadevan, 2009. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia. Journal of Magnetism and Magnetic Materials, 321(10), 1493-1496

Vidana, R. 2015. Origin of intraradicular infection with Enterococcus faecalis in endodontically treated teeth. Inst för odontology Dept of Dental Medicine.pp:

Williams, R. P., C. L. Gott,and J. A. Green, 1961. STUDIES ON PIGMENTATION of serratia marcescens V.: Accumulation of pigment fractions with respect to length of incubation time1. Journal of bacteriology, 81(3), 376

Zhang, L., and T. J. Webster, 2009. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano today, 4(1), 66-80.‏

Downloads

Published

2022-04-29

Issue

Section

Articles

How to Cite

kamel, R. M. ., & Yaaqoob , L. A. . (2022). EVALUATION OF THE BIOLOGICAL EFFECT SYNTHESIZED IRON OXIDE NANOPARTICLES ON ENTEROCOCCUS FAECALIS. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 53(2), 440-452. https://doi.org/10.36103/ijas.v53i2.1552

Similar Articles

221-230 of 289

You may also start an advanced similarity search for this article.