ROLE OF PHOSPHORUS, SILICON, AND CITRIC ACID IN ANATOMICAL TRAITS OF PEPPER PLANT CULTIVATED IN PLASTIC GREENHOUSE

Authors

  • A. H. Abdul Razzaq
  • N. J. AL-Amery

DOI:

https://doi.org/10.36103/hjm59f13

Keywords:

lateral roots; epidermis; vascular bundle; mesophyll; mineral nutrition

Abstract

This study was aimed to investigate effect of phosphorus, silicon, and citric acid on anatomical traits of pepper, This research was conducted at research stations, College of Agricultural Engineering Sciences, University of Baghdad, Jadiriyah Campus, during 2021-2022 season. The study employed factorial experiment within randomized complete block design (RCBD) with three replicates. The first factor included three levels of phosphorus (p) ( 0, 160, and 320 kg Ha-1 P2O5), the second factor included three levels of potassium silicate (s) ( 0, 75, and 100 kg Ha-1), while the third factor included four levels of citric acid (c ) ( 0, 2, 4, and 6 kg Ha-1). The results revealed that the P3S2C3 treatment had a significant increase in lateral root diameter (10.10 mm), P1S3C4 increased epidermis root thickness (30.93 µm), P3S3C2 led to increased root vascular bundle and stem,leaf cuticle thickness (284.9 µm, 6.63 µm, and 5.63 µm, respectively), the P1S2C4 treatment exhibited increased stem vascular bundle thickness (279.9 µm), The P1S2C2 showed increases in mesophyll thickness (106.03 µm), The P2S3C showed increases in leaf area (631.3 dcm2 plant-1) and P3S3C4 showed increases yield of plant (3.48 kg plant-1).

References

1. Abdelaal, K. A., Y. S. A. Mazrou, and Y. M. Hafez., 2020. Silicon foliar application mitigates salt stress in sweet pepper plants by enhancing water status, photosynthesis, antioxidant enzyme activity and fruit yield. Plants. 9(6):733-747. https://doi.org/10.3390/plants9060733

2. Al juboori, A. W. A. and M. M. Mohammed., 2021. Effect of phosphorous and amino acid on growth and yield of pea. Int. J. Agricult. Stat. Sci. Vol. 17, No. 1, pp. 81-84.https://doi.org/10.3390/plants9060733

3. Al-balawna, Z. A. and I. I. Abu-Abdoun., 2021. Fate of citric acid addition on mineral elements availability in calcareous soils of jordan valley. Nternational Research Journal of Pure & Applied Chemistry. 22(2): 82-89. https://doi.org/10.9734/irjpac/2021/v22i230389

4. Al-Hajani, R. M. A., N. N. F. Haded, and S. F. A. Al Bamarny., 2022. Influence of citric acid, ginger extract and storage period on fruit quality of local orange (Citrus sinensis L. Osbeck). Iraqi Journal of Agricultural Sciences.53(4):850-856. https://doi.org/10.36103/ijas.v53i4.1597

5. Ali, N. E. S., H. S. Rahi and A. W. A. R. Shaker., 2014. Soil Fertility. ISBN 978-9922-601-73-1. pp:307.

6. Arif, M. T. U., M. I. Zahan, M. M. Karim, S. Imran, C. T. Hunter, M. S. Islam, M. A. Mia, M. A. Hannan, M. S. Rhaman, M. A. Hossain, M. Brestic , M. Skalicky and Y. Murata.,l 2021. Citric acid‐mediated abiotic stress Tolerance in plants. International Journal of Molecular Sciences. 22, 7235. https://doi.org/10.3390/ijms22137235

7. Arya, G. C., S. Sarkar, E. Manasherova, A. Aharoni and H. Cohen., 2021. The plant cuticle: An ancient guardian barrier set against long-standing rivals. Front. Plant Sci. 12:663165. https://doi.org/10.3389/fpls.2021.663165

8. Baenas, N., M. Belovic, N. Ilic, D. A. Moreno and C. G. Viguera.,2019. Industrial use of pepper (Capsicum annum L.) derived products: technological benefits and biological advantages Food Chemistry. V (274). https://doi.org/10.1016/j.foodchem.2018.09.047.

9. Bahadur, B. , L. Sahijram, M. V. Rajam and K. V. Krishnamurthy., 2015. Plant Biology and Biotechnology. ISBN 978-81-322-2285-9.pp:509-510. https://link.springer.com/book/10.1007/978-81-322-2286-6

10. Bahadur, B., L. Sahijram, M. V. Rajam, and K. V. Krishnamurthy., 2015. Plant Biology and biotechnology. ISBN 978-81-322-2285-9.pp:309-315. https://link.springer.com/book/10.1007/978-81-322-2286-6

11. Bechtaoui, N., M. K. Rabiu, A. Raklami, K. Oufdou, M. Hafidi, and M. Jemo., 2021. Phosphate-dependent regulation of growth and stresses management in plants. Frontiers in Plant Science, 12, p.679916. https://doi.org/10.3389/fpls.2021.679916

12. Bhatla, S. C and M. A. Lal., 2018. Plant Physiology, Development and metabolism. ISBN pp: 499. https://link.springer.com/book/10.1007/978-981-13-2023-1

13. Datnoff, L.E., F. A. Rodrigues and K. Seebold., 2015. Silicon and plant diseases. ISBN 978-3-319-22929-4. pp: 7-19. http://dx.doi.org/10.1007/978-3-319-22930-0

14. Emongor, V. E. and O. Mabe., 2010, August. Effects of phosphorus on growth, yield and yield components of chilli pepper (Capsicum annuum L.). In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on 936 (pp. 327-334). https://doi.org/10.17660/ActaHortic.2012.936.42

15. Ferreira, E. B.; P. P. Cavalcanti and D. A. Nogueira., 2014. ExpDes: An R package for ANOVA and experimental designs . Applied Mathematics. Scientific Research.5(19): 2952-2958 .

16. Ferron-Carrillo, F. and M. Urrestarazu., 2021. Effects of Si in nutrient solution on leaf cuticles. Scientia horticulturae, 278, p. 109863. https://doi.org/10.1016/j.scienta.2020.109863

17. Gupta, A. K., A. Maheshwari and R. Khanam., 2020. Assessment of phosphorus fixing capacity in different soil orders of India. Journal of Plant Nutrition, 43(15), pp.2395-2401. https://doi.org/10.1080/01904167.2020.1771585

18. Hegazi, A. M., A. M. El-Shraiy and A. A. Ghoname., 2017. Growth, yield and nutritional quality of sweet pepper plants as affected by potassium and phosphate fertilizers varying in source and solubility. Curr. Sci. Int, 6(2), pp.445-457. https://www.curresweb.com/csi/csi/2017/445-457.

19. Hussein, W. A. and M. M. Muhammed., 2017. The response of white eggplant plants to foliar application with boron and potassium silicate. Assiut J. Agric. Sci., (48) No. (1-1) (394-401). https://doi.org/10.21608/ajas.2016.3874

20. Jayawardana, H. A. R. K., H. L. D. Weerahewa, and M. D. J. S. Saparamadu., 2014. Effect of root or foliar application of soluble silicon on plant growth, fruit quality and anthracnose development of capsicum. Tropical Agricultural Research 26 (1): 74 – 81. https://doi.org/10.4038/tar.v26i1.8073

21. Khanal, P. , P. Chaudhary, A. Adhikari, M. Pandey, S. Subedi, S. Acharya and T. P. Sharma., 2021. Effect of various phosphorus levels on growth and yield of chilli (Capsicum annuum) in deukhuri, dang of nepal. Fundamental and Applied Agriculture. 6(1): 78–85. http://dx.doi.org/10.5455/faa.52998

22. Kotb, H. M., Hegazi H. H., I. M. Ghoneim and M. N. Feleafel., 2018. Effect of water regime, pruning system and potassium silicate on dry mass production of sweet pepper plants grown in calcareous soil under greenhouse. Alex. J. Agric. Sci. 63, No.2, pp. 105-118. http://dx.doi.org/10.21608/alexja.2019.28569

23. Lambers, H., 2022. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 73:17–42. https://doi.org/10.1146/annurev-arplant-102720-125738

24. Lob, S., N. S. Sa'ad., N. F. Ibrahim, N. C. Soh, R. M. Shah and M. S. H. Zaudin., 2023. Enhanced Growth of Chili (Capsicum annuum L.) by silicon nutrient application in fertigation system. Malaysian Applied Biology. 52(2):13-19. https://doi.org/10.55230/mabjournal.v52i2.2648

25. Ma, J. F., 2003. Functions of silicon in higher plants. Prog. Mol. Subcell. Biol, 33, pp.127-147. https://link.springer.com/content/pdf/10.1007/978-3-642-55486-5.pdf#page=136

26. Mitra, G. N., 2015. Regulation of nutrient uptake by plants. New Delhi: Springer, 10, pp.978-981.https://link.springer.com/content/pdf/10.1007/978-81-322-2334-4.pdf

27. Moscone, E.A., M. A. Scaldaferro, M. Grabiele, N. M. Cecchini, Y. S. García, R. Jarret, J. R., Daviña, D. A. Ducasse, G. E. Barboza and F. Ehrendorfer., 2006, July. The evolution of chili peppers (Capsicum-Solanaceae): a cytogenetic perspective. In VI International Solanaceae Conference: Genomics Meets Biodiversity 745 (pp. 137-170).https://doi.org/10.17660/ActaHortic.2007.745.5

28. Naeem, M., A. A. Ansari and S. S. Gill., 2017. Essential plant nutrients uptake, use efficiency, and management. ISBN 978-3-319-58840-7. pp: 148. http://dx.doi.org/10.1007/978-3-319-58841-4

29. Niu, Y.F., R. S. Chai, G. L. Jin, H. Wang, C. X. Tang Y. S. and Zhang. 2013. Responses of root architecture development to low phosphorus availability: a review. Annals of botany, 112(2), pp.391-408.

https://doi.org/10.1093/aob/mcs285

30. Palevitch, D. and L. E. Craker., 1996. Nutritional and medical importance of red pepper (Capsicum spp.). Journal of herbs, spices & medicinal plants, 3(2), pp.55-83.https://doi.org/10.1300/J044v03n02_08

31. Silber, A., M. Bruner, E. kenig and S. Assouline., 2005. High fertigation frequency and phosphorus level: Effects on summer-grown bell pepper growth and blossom-end rot incidence. Plant and Soil, 270(1), pp.135-146. http://dx.doi.org/10.1007/s11104-004-1311-3

32. Smith, F. W., 2002. The phosphate uptake mechanism. Plant and Soil, 245(1), pp.105-114. https://doi.org/10.1023/A:1020660023284 33. Tellez, L. I. T. , A. G.Jimenez, H. F. E. Sepulveda, S. M. R.Olvera, J. J. B.-Bello and F. C. G. Merino., 2020. Silicon induces hormetic dose-response effects on growth and concentrations of chlorophylls, amino acids and sugars in pepper plants during the early developmental stage. Peer J 8:e9224. doi: 10.7717/peerj.9224

34. Tripathi,P., S. Subedi, A. L. Khan, Y. S. Chung and Y. Kim., 2021. Silicon effects on the root system of diverse crop species using root phenotyping technology. Plants 10, 885. https://doi.org/10.3390/plants10050885

35. Verma, K. K., X. P. Song, D. D. Tian, D. J. Guo, Z. L. Chen, C. S. Zhong, A. Nikpay, M. Singh, V. D. Rajput, R. K. Singh, and T. Minkina, 2021. Influence of silicon on biocontrol strategies to manage biotic stress for crop protection, performance, and improvement. Plants, 10(10): 2163.https://doi.org/10.3390/plants10102163

36. Xu, R., J. Huang, H. Guo, C. Wang, and H. Zhan, 2023. Functions of silicon and phytolith in higher plants. Plant Signaling & Behavior, 18(1): 1-7. https://doi.org/10.1080/15592324.2023.2198848

37. Xu, X., T. Zhu, N. Nikonorova, and I. De Smet, 2018. Phosphorylation‐mediated signalling in plants. Annual Plant Reviews Online, pp.909-932.

https://doi.org/10.1002/9781119312994.apr0702

38. Yu-tao, C. U.., L. I. Shun-jin, W. A. N. G. Yuan, S. U. N. Kai, and L. I. Hao-ran, 2023. Effects of phosphorus application rates and methods on the yield, phosphorus uptake and utilization of pepper. Journal of Plant Nutrition and Fertilizers, 29(12), pp.2322-2331. https://dx.doi.org/10.11674/zwyf.2023205

39. Zhang, X., B. Zhong, M. Shafi, J. Guo, C. Liu, H. Guo, D. Peng, Y. Wang, and D. Liu, 2018. Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo. Environmental Science and Pollution Research, 25(19), pp.18846-18852.

https://doi.org/10.1007/s11356-018-2040-0

Downloads

Published

2025-10-27

Issue

Section

Articles

How to Cite

Abdul Razzaq , A. H., & AL-Amery, N. J. (2025). ROLE OF PHOSPHORUS, SILICON, AND CITRIC ACID IN ANATOMICAL TRAITS OF PEPPER PLANT CULTIVATED IN PLASTIC GREENHOUSE. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(5), 1888-1900. https://doi.org/10.36103/hjm59f13