EVALUATING SLOW RELEASE FERTILIZER PREPARED BY LOADING PHOSPHORUS ON SURFACE MODIFIED NANO SYRIAN ZEOLITIC TUFF

Authors

  • B. Salameh
  • L. A. Habib
  • A. Adra
  • Z. Hatem

DOI:

https://doi.org/10.36103/4fr28638

Keywords:

Nano Syrian Zeolitic Tuff NSZT, Suface modification, Column study

Abstract

This study was aimed to assessment of using nano Syrian zeolitic tuff (NSZT) as carrier to produce slow release phosphate fertilizer was executed. phosphate salt was loaded to modified nano-zeolite by HDTMA-Br (hexadecyl trimethyl ammonium bromide) surfactant application. Two main treatments (SMZ1, SMZ2), making approximately monolayer (83%) and bilayer (190%) real coverage of external cationic exchange capacity respectively. Phosphate was loaded on SMZ to prepare slow release fertilizer (SRF1, SRF2) respectively. Surface characteristics were conducted by using XRD and SEM techniques. Adsorption/ release experiments and incubation column were studied. Results showed that Langmuir isotherm was better to give good estimation of phosphorus sorption about nature of homogeneity. Phosphate release time into water solution from SRFs increased as surface modification ratio increased. Elovich model was good tool to predict the phosphate release ratio coefficient which was independent of HDTMA-Br modification coverage ratio. After 40 days of incubation experiment in columns, soil effect dropped up the leached phosphate in the flux less than 10% of the initial P loading concentration. Incubation column experiment confirms expectations about the anion exchange mechanism between phosphate and bilayer on NSZT.

References

1. Alberti G., V. Amendola, M. Pesavento, and R. Biesuz, 2012. Beyond the synthesis of novel solid phases: Review on modelling of sorption phenomena, Coordination Chemistry Reviews, Vol. 256, No. 1-2, 2012, pp. 28-45.

https://doi.org/10.1016/j.ccr.2011.08.022.

2. Atta A. Y., B. Y. Jibril, B. O. Aderemi, and S. S. Adefila, 2012. Preparation of analcime from local kaolin and rice husk ash. Applied Clay Science 61, 8–13. https://doi.org/10.1016/j.clay.2012.02.018.

3. Bansiwal, A. K., S. S Rayalu, and N. K. Labhasetwar, A. A. Juwarkar. and S. Devotta, 2006. Surfactant-modified zeolite as a slow releasefe rtilizer for phosphorus. Journal of Agricultural and Food Chemistry, 54(13), pp.4773-4779.

http://doi. 10.1021/jf060034b

4.Basu, S.K., N. Kumar, and J.P. Srivastava, 2010. Modeling NPK release from spherically coated fertilizer granules. Simulation Modelling Practice and Theory, 18(6), pp.820-835.

https://doi.org/10.1016/j.simpat.2010.01.018.

5. Bhardwaj, D., M. Sharma, P. Sharma, and R. Tomar, 2012. Synthesis and surfactant modification of clinoptilolite and mont-morillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer. Journal of hazardous materials, 227, pp.292-300.

https://doi.org/10.1016/j.jhazmat.2012.05.058

6. Byrappa K., and B. V. S. Kumar, 2007. Characterization of zeolites by infrared spectroscopy. Asian Journal of Chemistry 19 (6) pp: 4933-4935.

7. Cappelletti, P., A. Colella, A. Langella, M. Mercurio, L. Catalanotti, V. Monetti, and B. de Gennaro, 2017. Use of surface modified natural zeolite (SMNZ) in pharma-ceutical preparations Part 1. Mineralogical and technological characterization of some industrial zeolite-rich rocks. Microporous and Mesoporous Materials, 250, pp.232-244.

https://doi.org/10.1016/j.micromeso.2015.05.048

8. Dada, A. O., A. P. Olalekan, A. M. Olatunya, and O. J. I. J. C. Dada, 2012. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of applied chemistry, 3(1), 38-45.

https://doi:10.9790/5736-0313845

9.De Gennaro, B., P. Aprea, B. Liguori, B. alzerano, A. Peluso and D. Caputo, 2020. Zeolite-rich composite materials for environ-mental remediation: Arsenic removal from water. Applied Sciences, 10(19), 6938.

https://doi.org/10.3390/app10196939.

10.Dionisiou N. S. and T. Matsi, 2016. Chapter 23 :Natural and Surfactant-Modified Zeolite for the Removal of Pollutants (Mainly Inorganic) From Natural Waters and Wastewaters, Editor(s): M.N.V. Prasad, Kaimin Shih, Environmental Materials and Waste, Academic Press.

https://doi.org/10.1016/B978-0-443-22069-2.00026-7

11. Djamaan, M. Suardi, R. Mayerni, S. Arief, B. Dewi, N. R. Putri, S. Merwanta, Y. Rasyadi, R. S. Lalfari, I. S. Sati, and E. S. Ben, 2018. Formulation of slow-release npk double-coated granules using bioblend polymer by spray. Iraqi Journal of Agricultural Sciences –49(6):1032-1040.

https://doi.org/10.36103/ijas.v49i6.139

12.Dong-Su, K, 2003. Measurement of point of zero charge of bentonite by solubilization technique and its dependence of surface potential on pH. Environ. Eng. Res Korea, Vol. 8, No. 4, 222-227.

https://doi.10.4491/eer.2003.8.4.222

13.Dubey, A. and D. R. Mailapalli, 2019. Zeolite coated urea fertilizer using different binders: Fabrication, material properties and nitrogen release studies. Environmental Technology & Innovation, https://doi.10.1016/j.eti.2019.100452

14. El-Kammar, A., A. Melegy, and G. Miro 2015. Mineralogical and geochemical characterization of natural zeolites from southwest Syria. Arabian Journal of Geosciences, 8, 4589-4601.

https:// doi.10.1007/s12517-014-1519-3

15. Griffin, R.A. and J. J. Jurinak, 1974. Kinetics of the phosphate interaction with calcite. Soil Science Society of America Journal, 38(1), pp.75-79.

https://doi.org/10.2136/sssaj1974.03615995003800010026x

16. Guan H, E. Bestland, C. Zhu, H. Zhu, D. Albertsdottir., J.Hutson, G. T. Simmons. M. G. Markovicc, X. Tao and A. V. Ellis, 2010.Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites. Journal of Hazardous Materials (183) 616–62.

https://doi.10.1016/j.jhazmat.2010.07.069

17. Habib L. and S. Younes, 2018. The Ability of NSZ ore to bind and release of ammonium and its effect on Rye-grass response to nitrogen. Tishreen- Uni-versity Journal for Research and Scientific Studies -Biological Sciences Series Vol.(04) No.(1).

18. Habib, L., A. Adra, I. Alghoraibi, and B. Salameh, 2022. Characterization of Syrian Nano metric Zeolite Ore Modified by Using Cationic Surfactant (Hexadecyl tri-methyl Ammonium Bromide = HDTMA-Br). Tishreen University Journal Biological Sciences Series, 44(2), 35-53.

19. Hamdi N. and E. Srasra, 2012. Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite, Journal of Environmental Sciences:24:617–62.

https://doi.org/10.1016/S1001-0742(11)60791-2 20. Hatem, Z., L. Habib, and M. Ghafar, 2018. Phosphate removal from natural waters by natural Syrian zeolitic ore: Sorption study. American Journal of Innovative Research and Applied Sciences.Vol. (5), No. (6): 445-453.

21. House, J. E. 2007. Principles of chemical kinetics. Elsevier Inc., Amsterdam.

22. Hu, Q., and Z. Zhang, 2019. Application of Dubinin–Radushkevich isotherm model at the solid/solution interface: A theoretical analysis. Journal of Molecular Liquids, 277, 646-648.

https://doi.org/10.1016/j.molliq.2019.01.005

23. Hubicki Z., E. Zieba, G. Wojcik and J. Ryczkowski, 2009. FT-IR/PAS and SEM EDX Studies on Aluminosilicates Modified by Cs(I), Th(IV) and U(VI). Acta Physica Polonica A. No.3 Vol 116 pp 312-314.

https://10.12693/APhysPolA.116.312

24. Imadi M. 2003, Geological map of Syria, explanatory notes. Tell-Sis sheet, scale 1:50000. GEGMR Syria.

25. Ishikawa M. and M. Ichikuni, 1981. Co-precipitation of phosphate with calcite. Geochemical Journal, vol. 15, 283-288.

https://doi.org/10.2343/geochemj.15.283

26. Jiao, Y., J. K. Whalen, and W. H. Hendershot, 2007. Phosphate sorption and release in a sandy loam soil as influenced by fertilizer sources. Soil Science Society of America Journal, 71(1), 118-124.

https://doi.10.2136/sssaj2006.0028

27. Jubair Sh. M. and W. A. Ahmad, 2019. Effect of nanofertilizers and application methods on vegetative growth and yield of date palm. Iraqi Journal of Agricultural Sciences 50(1):267-274.

https://doi.org/10.36103/ijas.v50i1.292

28. Karageorgiou, K., M. Paschalis, and G. N. Anastassakis, 2007. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. Journal of Hazardous Materials,139(3), 447-452.

https://doi.10.1016/j.jhazmat.2006.02.038

29. Lateef, A., R. Nazir, N. Jamil, S. Alam, R. Shah, M. N Khan, and M. Saleem, 2016. Synthesis and characterization of zeolite based nano–composite:An environment friendly slow release fertilizer. Microporous and Mesoporous Materials, 232, pp.174-183.

https://doi.org/10.1016/j.micromeso.2016.06.020

30. Lateef, A., R. Nazir, N. Jamil, S. Alam, R. Shah, M.N Khan, and M. Saleem, 2019. Synthesis and characterization of environmental friendly corncob biochar based nano-composite–A potential slow release nano-fertilizer for sustainable agriculture. Environmental Nanotechnology, Monitoring & Management, 11, p.10021.

https://doi.10.1016/j.enmm.2019.100212

31. León-Silva, S., R. Arrieta-Cortes, F. Fernández-Luqueño, and F. López-Valdez, , 2018. Design and production of nanofertilizers. In:Agricultural nanobiotechnology, López-Valdez F. and Fernández-Luqueño F. (eds), Springer, Cham, Switzerland, pp. 17–31

32. Li, Z., and J. Huang, 2014. Effects of nanoparticle hydroxyapatite on growth and antioxidant system in pakchoi (Brassica chinensis L.) from cadmium-contaminated soil. Journal of Nanomaterials.

https://doi.org/10.1155/2014/470962

33. Li, Z., C. A. Willms, and K. Kniola, 2003. Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite. Clays and Clay Minerals, 51(4), pp.445-451.

https://doi.org/10.1346/CCMN.2003.0510411

34. Loganathan, P., S. Vigneswaran, J. Kandasamy, and N. S. Bolan, 2014. Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44(8), pp.847-907.

https://doi.10.3126/jist.v24i1.24640

35. Lookman, R., D. Freese, R. Merckx, K. Vlassak, and W. H. Van Riemsdijk, 1995. Long-term kinetics of phosphate release from soil. Environmental science & technology, 29(6), pp.1569-1575. https://doi.org/10.1021/es00006a020

36. Majdan M., S. Pikus, Z. Rza ̨czyn ́ska, M. Iwan, O. Maryuk, R. Kwiatkowski, and H. Skrzypek, 2006. Characteristics of chabazite modified by hexadecyl trimethyl ammonium bromide and of its affinity toward chromates. Journal of Molecular Structure 791:53- 60.

https://doi.10.1016/j.molstruc.2005.12.043

37. Miller M. A., M.R. Kendall, M. K. Jain, P. R. Larson, A. S. Madden and A. Cuneyt Tas. 2012. Testing of Brushite (CaHPO4·2H2O) in synthetic Biomineralization solutions and in situ crystallization of Brushite micro-granules. J. American ceramic Society, 2178–2188.

https://doi.10.1111/j.1551-2916.2012.05186.x

38. Ming, D. W and Dixon, J. B. 1987. Quantitative determination of clinoptilolite in soils by a cation-exchange capacity method. Clays and clay minerals Texas, V.35, N.6, 463-468.

https://doi.org/10.1346/CCMN.1987.0350607

39. Murphy, J. and J. P. Riley, 1962. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Analytica Chimica Acta, 27, 31-36.

http://dx.doi.org/10.1016/S00032670(00)88444-5

40. Pino, J. N., I. A. Padrón, M. G. Martin, and J. G. Hernández, , 1995. Phosphorus and potassium release from phillipsite-based slow-release fertilizers. Journal of controlled release, 34(1), pp.25-29.

https://doi.org/10.1016/0168-3659(94)00116-C

41. Raheb, I., S. Suleiman, M. Fead, 2014. Adsorption of Ni(II) ions from aqueous solutions using natural zeolite. Tishreen University Journal for Research and Scientific Studies - Basic Sciences Series Vol. (36) No. (3).

42.Rajonee, A. A; S. Zaman, and S. M. I. Huq, 2017. Preparation, Characterization and Evaluation of Efficacy of Phosphorus and Potassium Incorporated Nano Fertilizer. Advances in Nanoparticles, 6, 62-74.

https://doi.10.4236/anp.2017.62006

43. Rodriguez-Blanco, J. D., S. Shaw, and L. G. Benning, 2011. The Kinetics and Mechanisms of Amorphous Calcium Carbonate (ACC) Crystallization to Calcite, via Vaterite. Nanoscale, 3, 265-271.

https:// doi:10.1039/c0nr00589d

44. Safarjalani A. Al, H. J. Massonne, and T. Theye, 2010. Chemical composition of zeolite ore in the Al-Sis Formation outcropping in the Syrian Hamad area. Alexandria science exchange journal Vol. 31, No.3.

https://doi.10.21608/ASEJAIQJSAE.2010.158254

45. Safarjalani, A. Al, 2011. Petrographical and mineralogical Characterization of Zeolite Ore, in Syrian Hamad, Damascus University Journal for Agricultural Scientifics,Vol. 27, No.1. 29-50 pp.

46. Salameh B., L. Habib, and A. Adra, 2022. Studying the Ability of Syrian Nano Zeolite Ore Modified By (HDTMA-Br) to Adsorb Phosphate from Aqueous Solutions (Adsorption Study). Syrian Journal of Agricultural Research 9(5): 276-291.

47. Shahabifar, J., E. Panahpour, F. Moshiri, A. Gholami, and M. Mostashari, 2019. The quantity/intensity relation is affected by chemical and organic P fertilization in calcareous soils. Ecotoxicology and Environmental Safety, 172, pp.144-151.

https://doi.org/10.1016/j.ecoenv.2019.01.058

48. Sharma, S., S. S. Singh, A. Bahuguna, B. Yadav, A. Barthwal, R. Nandan, R. Khatana, A. Pandey, R. Thakur, and H Singh, 2022. Nanotechnology: An efficient tool in plant nutrition management. In book: Ecosystem Services: Types, Management and Benefits; Nova Science Publishers, Inc.: Hauppauge, NY, USA.

49. Solanki, P., A. Bhargava, H. Chhipa, N. Jain, and J. Panwar, 2015. Nano-fertilizers and Their Smart Delivery System. In: Rai, M., Ribeiro, C., Mattoso, L., Duran, N. (eds) Nanotechnologies in Food and Agriculture. Springer, Cham.

https://doi.org/10.1007/978-3-319-14024-7_4.

50. Stumm, W. and J. Morgan, 1981. Aquatic chemistry: chemical equilibria and rates in natural waters, Book, 6th edition. John Wiley and Sons. Chicago.

51. Suits, L. D, T. Sheahan, A. Cerato, and A. Lutenegger, 2002. Determination of Surface Area of Fine-Grained Soils by the Ethylene Glycol Monoethyl Ether (EGME) Method. Geotechnical Testing Journal, USA, Vol. 25, No. 3.

https://doi.10.1520/GTJ11087J

52. Sullivan, E. J, J. W. Careyb, and R. Bowman, 1998. Thermodynamics of Cationic Surfactant Sorption onto Natural Clinoptilolite, Journal of Colloid and Interface Science, V. 206, Issue 2, 369-380.

https://doi.org/10.1006/jcis.1998.5764

53. Walkley, A. and I. A. Black, 1934. An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37, 29-38.

http://dx.doi.org/10.1097/00010694-193401000-00003

54. Wu, F.-C., R.-L. Tseng, and R.-S. Juang, 2009. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chemical Engineering Journal (150) 366–373.

https://doi.org/10.1016/j.cej.2009.01.014

55. Zulfiqar, F., M. Navarro, M. Ashraf, N.A. Akram, and S. Munné-Bosch, 2019. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289.

https://doi.10.1016/j.plantsci.2019.110270

Downloads

Published

2025-10-27

Issue

Section

Articles

How to Cite

Salameh, B., Habib, L. A., Adra, A., & Hatem, Z. (2025). EVALUATING SLOW RELEASE FERTILIZER PREPARED BY LOADING PHOSPHORUS ON SURFACE MODIFIED NANO SYRIAN ZEOLITIC TUFF . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(5), 1850-1865. https://doi.org/10.36103/4fr28638