BIOCHAR-SUPPLEMENTED IN VITRO CULTURE OF MUSA ACUMINATA VAR. BARANGAN TO CONTROL CONTAMINATION AND ENHANCE REGENERATION

Authors

  • Mustika Tuwo
  • Fahruddin
  • Elis Tambaru
  • Nabila Syam
  • Nur Fadilah
  • S. Jaga

DOI:

https://doi.org/10.36103/8kjabq68

Keywords:

biochar, tissue culture, contamination control, browning, micropropagation.

Abstract

This study aimed to evaluate the effectiveness of coconut shell-derived biochar supplementation in Murashige and Skoog (MS) medium to suppress contamination and enhance regeneration efficiency. A Completely Randomized Design (CRD) with 11 biochar concentrations (0–5 g/L) was used, each with three replicates. Parameters observed included contamination and browning onset, browning intensity, propagule formation time, fresh weight, shoot number, and shoot height. Results showed that biochar significantly delayed contamination and browning. The 2 g/L treatment yielded the best results: 13.8 days after culture (DAC) for contamination and 12.67 DAC for browning. The lowest browning intensity (score 1.41) occurred at 5 g/L. Propagule formation was fastest at 3 g/L, while optimal shoot multiplication and height were observed at 2 g/L. These benefits are attributed to biochar’s ability to enhance nutrient availability, adsorb phenolics, stabilize pH, and regulate endogenous hormones. However, concentrations ≥4 g/L reduced culture performance, likely due to osmotic stress and media imbalance.

References

1. Abdalla, N., H. El-Ramady, M. K. Seliem, M. E. El-Mahrouk, N. Taha, Y. Bayoumi, T. A. Shalaby, and J. Dobránszki., 2022. An academic and technical overview on plant micropropagation challenges. Horticulturae. 8

(8): 1-28. https://doi.org/10.3390/horticulturae8080677.

2. Admojo, L., and A. Indrianto., 2016. Browning prevention on callus initiation phase on leaf midrib of PB 330 rubber clone culture (Hevea brasiliensis Muell.Arg). Indonesian J. Nat Rubb. Res. 34(1): 25-34.

3. Afidah, U., F. N. Aziz, and N. Hasniah., 2025. Effects of carrageenan and isolated soy protein addition on the physicochemical and sensory properties of chicken sausages. Journal of Applied Food Technology. 12(1): 52-56. https://doi.org/10.17728/jaft.26987.

4. Ajien, A., J. Idris, N. Md. Sofwan, R. Husen, and H. Seli., 2022. Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. Waste Management & Research. 41(1): 1-15. https://doi.org/10.1177/0734242X221127167.

5. Alfei, S., and O. G. Pandoli., 2024. Biochar-derived persistent free radicals: a plethora of environmental applications in a light and shadows scenario. Toxics. 12(4): 1-40. https://doi.org/10.3390/toxics12040245

6. Appah, G. B., G. O. Nkansah, and C. Amoatey., 2021. Evaluation of biofertilizers and biochar on the growth characteristics and yield of hot pepper. Cell Biology and Development. 5(1): 32-42. https://doi.org/10.13057/cellbioldev/v050105.

7. Arista, N., and R. M. Siregar., 2024. Antioxidant activity test of barangan banana peel extract (Musa Acuminata Linn) using the DPPH method. Nautical: Indonesian Multidisciplinary Scientific Journal. 2(12): 1-8. https://doi.org/10.55904/nautical.v2i12.632.

8. Aziz, K. H. H., 2024. Removal of toxic heavy metals from aquatic systems using low-cost and sustainable biochar: a review. Desalination and Water Treatment. 320. 1-14. https://doi.org/10.1016/j.dwt.2024.100757.

9. Babu, P., 2019. An efficient protocol for in vitro regeneration of banana var. Nanjangudu rasabale (Musa spp. AAB). International Journal of Current Microbiology and Applied Sciences. 8(6): 3392-3402.

10. Bamagoos, A., H. Alharby, and S. Fahad., 2021. Biochar coupling with phosphorus fertilization modifies antioxidant activity, osmolyte accumulation and reactive oxygen species synthesis in the leaves and xylem sap of rice cultivars under high-temperature stress. Physiol Mol Biol Plants. 27(9):2083-2100. https://doi.org/10.1007/s12298-021-01062-7.

11. Baskara, D. R., A. Wijayani, and Srilestari., 2018. The combination of browning inhibitors and sucrose on the growth of Mas Kirana banana plantlets Musa acuminata C. in vitro. Agrivet. 24(1): 1-9.

12. Boros-Lajszner, E., J. Wyszkowska, and J. Kucharski., 2025. Biochar as a stimulator of Zea mays growth and enzyme activity in soil contaminated with zinc, copper, and nickel. Agronomy. 15(7): 1-21. https://doi.org/10.3390/agronomy15071543.

13. Braghiroli, F. L., H. Bouafif, N. Hamza, C. Neculita, and A. Koubaa. 2018. Production, characterization, and potential of activated biochar as adsorbent for phenolic compounds from leachates in a lumber industry site. Environmental Science and Pollution Research. 25: 26562–26575. https://doi.org/10.1007/s11356-018-2712-9.

14. Chang, Y., L. Rossi, L. Zotarelli, B. Gao, Shahid, Muhammad, and A. Sarkhosh., 2021. Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture. 8(7): 1-11.

https://doi.org/10.1186/s40538-020-00204-5.

15. Chi, W., Q. Nan, Y. Liu, Da, Dong, Y. Qin, S. Li, and W. Wu., 2024. Stress resistance enhancing with biochar application and promotion on crop growth. Biochar 6(43): 1-25. https://doi.org/10.1007/s42773-024-00336-z.

16. Das, R., T. Kretzschmar, and J. C. Mieog., 2024. Importance of media composition and explant type in Cannabis sativa Tissue Culture. Plants. 13(18): 1-22. https://doi.org/10.3390/plants13182544

17. Dey, S., T. J. Purakayastha, B. Sarkar, J. Rinklebe, S. Kumar, R. Chakraborty, A. Datta, K. Lal, and Y. S. Shivay., 2023. Enhancing cation and anion exchange capacity of rice straw biochar by chemical modification for increased plant nutrient retention. Sci Total Environ. 886: 1-14.

doi: https://doi.org/10.1016/j.scitotenv.

18. Derdag, S. M., and N. Ouazzani., 2025. Advancements in sustainable biochar production from waste: pathways for renewable energy generation and environmental remediation. Biomass. 5(2): 1-44. https://doi.org/10.3390/biomass5020032.

19. Dong, X., Y. Chu, Z. Tong, D. Sun, X. Meng, T. Yi, M. Gao, Wang, and J. Duan., 2024. Mechanisms of adsorption and functionalization of biochar for pesticides: a review. Ecotoxicology and Environmental Safety. 272: 1-11. https://doi.org/10.1016/j.ecoenv.2024.116019.

20. Fahruddin, F., S. Fauziah, M. F. Samawi, E. Johannes, E. Tambaru, A. Abdullah, M. Tuwo, Y. F. Syahri, N. Faradhilah, and L. Dwiyanto., 2024. Biochar from coconut shell biomass for the removal of sulfate and cadmium reduction in acid mine drainage treatment. Pol. J. Environ. Stud. 33(5): 5627-5634. https://doi.org/10.15244/pjoes/183175.

21. Fu, Y., Y. Yi, Y. Wang, Y. Diao, Z. Diao, and Z. Chen., 2025. A comprehensive review of modified biochar-based advanced oxidation processes for environmental pollution remediation: efficiency, mechanism, toxicity assessment. Journal of Environmental Management. 387: 1-29. https://doi.org/10.1016/j.jenvman.2025.125872.

22. Ghassemi-Golezani, K., S. Latifi, and S. Farhangi-Abriz., 2025. Biochar-mediated remediation of nickel and copper improved nutrient availability and physiological performance of dill plants. Sci Rep. 15(1): 1-10. https://doi.org/10.1038/s41598-025-98646-0.

23. Hou, J., A. Pugazhendhi, R. Sindhu, V. Vinayak, N.C. Thanh, K. Brindhadevi, N. T. L. Chi, and D. Yuan., 2022. An assessment of biochar as a potential amendment to enhance plant nutrient uptake. Environmental Research. 214: 1-8. https://doi.org/10.1016/j.envres.2022.113909.

24. Ighalo, J. O., J. Conradie, C. R. Ohoro, J. F. Amaku, K. Oyedotun, N. W. Maxakato, K. Akpomie, E. S. Okeke, C. Olisah, A. Malloum, and K. A. Adegoke., 2023. Biochar from coconut residues: an overview of production, properties, and applications. Industrial Crops and Products. 204. 1-18. https://doi.org/10.1016/j.indcrop.2023.117300.

25. Inyang, M. I., B. Gao, Y. Yao, Y. Xue, A. Zimmerman, A. Mosa, et al. 2015. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology. 46(4): 406–433. https://doi.org/10.1080/10643389.2015.1096880.

26. Joseph, S., A. L. Cowie, L. V. Zwieten, N. Bolan, A. Budai, A. Buss, M. L. Cayuela, E. R. Graber, J.A. Ippolito, Y. Kuzyakov, Y. Luo, Y. S. Ok, K. N. Palansooriya, J. Shepherd, S. Stephens, Z. Weng, and J. Lehmann., 2021. How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. Global Change Biology (GCB)-Bioenergy. 13: 1731-1764. https://doi.org/10.1111/gcbb.12885.

27. Khan, S., S. Irshad, K. Mehmood, Z. Hasnain, M. Nawaz, A. Rais, S. Gul, M. A. Wahid, A. Hashem, E. F. Abd_Allah, and D. Ibrar., 2024. Biochar Production and characteristics, its impacts on soil health, crop production, and yield enhancement: a review. Plants. 13(2): 1-18. https://doi.org/10.3390/plants13020166

28. Kiruwa, F. H., E. E. Minga, A. A. Aloycee, and M. M. Shimwela., 2024. Best practice for initiation of banana and plantain (Musa spp.) culture. J Plant Biotechnol. 51: 55-62. https://doi.org/10.5010/JPB.2024.51.006.055.

29. Ko, W. H., C. C. Su, C. L. Chen, et al. 2009. Control of lethal browning of tissue culture plantlets of cavendish banana cv. formosana with ascorbic acid. Plant Cell Tiss Organ Cult. 96: 137–141. https://doi.org/10.1007/s11240-008-9469-7.

30. Latunra, A. I., M. Tuwo, Ardiansa and D. S. Amboupe., 2024. Enhancement of caffeine concentration in todolo coffee callus cultures with l-methionine and uv-vis spectrophotometry. Pakistan Journal of Biological Sciences. 2024. 27: 567-576. https://doi.org/10.3923/pjbs.2024.567.576.

31. Lehmann, J., and S. Joseph., 2015. Biochar for Environmental Management, Science, Technology and Implementation Second Edition. Routledge, New York. pp. 1-14.

32. Liu, H., F. Xu, Y. Xie, C. Wang, A. Zhang, L. Li, and H. Xu., 2018. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil. Science of The Total Environment. 645: 702-709. https://doi.org/10.1016/j.scitotenv.2018.07.115.

33. Lubis, D., P. Panjaitan, and W. Saragih., 2024. Marketing analysis of barangan bananas (Musa acuminata L.) in Namorih Village, Pancur Batu District, Deli Serdang Regency, North Sumatra Province. Jurnal Agribizda. 7(1): 38-52.

34. Malabadi, R. B., R. K. Chalannavar, K. P. Kolkar., 2025. Plant cell totipotency: Plant tissue culture applications-An updated review. World Journal of Advanced Engineering Technology and Sciences. 16(2): 112-135. https://doi.org/10.30574/wjaets.2025.16.2.1262.

35. Manokari, M., R. Latha, S. Priyadharshini, et al. 2021. Effect of activated charcoal and phytohormones to improve in vitro regeneration in Vanda tessellata (Roxb.) Hook. ex G. Don. Vegetos. 34: 383–389. https://doi.org/10.1007/s42535-021-00196-z.

36. Meng, F., Y. Wang, and Y. Wei., 2025. Advancements in biochar for soil remediation of heavy metals and/or organic pollutants. Materials (Basel). 18(7): 1-32. https://doi.org/10.3390/ma18071524.

37. Mohd Nor, M. S., 2020. Browning inhibition in in vitro regeneration of Musa paradisiaca cv. Tanduk using ascorbic acid. Tesis Magister, Universiti Teknologi MARA.

38. Munawaroh, P. A. Q., S. Pancaningtyas, and M. Su’udi., 2024. Effectiveness of antioxidants on in vitro regeneration of Musa paradisiaca var. raja to prevent browning and enhance embryo development. Pelita Perkebunan. 40(2): 125-137.

39. Murtaza, G., Z. Ahmed, S. M. Eldin, I. Ali, M. Usman, R. Iqbal, M. Rizwan, U. K. Abdel-Hameed, A. A. Haider, and A. Tariq., 2023. Biochar as a green sorbent for remediation of polluted soils and associated toxicity risks: a critical review. Separations. 10(3): 1-34. https://doi.org/10.3390/separations10030197.

40. Ngomuo, M., E. Mneney, and P. Ndakidemi., 2014. Control of lethal browning by using ascorbic acid on shoot tip cultures of a local Musa spp. (Banana) cv. mzuzu in Tanzania. African Journal of Biotechnology. 13(16): 1721-1725. https://doi.org/10.5897/AJB2013.13251.

41. Nkoh, J. N., F. O. Ajibade, E. O. Atakpa, M. Abdulaha-Al Baquy, S. Mia, E. C. Odii, and R. Xu., 2022. Reduction of heavy metal uptake from polluted soils and associated health risks through biochar amendment: a critical synthesis. Journal of Hazardous Materials Advances. 6: 1-17. https://doi.org/10.1016/j.hazadv.2022.100086.

42. Onuoha, I. C. O., C. J. Eze, and I. N. Unamba., 2011. In vitro prevention of browning in plantain culture. Online Journal of Biological Sciences. 11(1): 13-17. https://doi.org/10.3844/ojbsci.2011.13.17.

43. Ruan, R., and Y. Wang., 2024. Effects of biochar amendment on root growth and plant water status depend on maize genotypes. Agricultural Water Management. 293: 1-11. https://doi.org/10.1016/j.agwat.2024.108688.

44. Safwat, G., F. Abdul-Rahman, and S. El Sharbasy., 2015. The effect of some antioxidants on blackening and growth of in vitro culture of banana (Musa spp.cv. Grand Naine). Egypt. J. Genet. Cytol. 44: 47-59.

45. Sibuea, P., and D. L. Sitanggang., 2023. Aktivitas antioksidan dari ekstrak buah pisang barangan dan potensinya sebagai pengawet bakso. Journal Riset Teknologi Pangan dan Hasil Pertanian (RETIPA). 4(1): 8-17. https://doi.org/10.54367/retipa.vi.3195.

46. Song, S., S. Arora, A. K. C. Laserna, Ye, Shen, B. Thian, J. Cheong, J. Tan, Chiam, Y. Zhong, S. Fong, S. Ghosh, Y. S. Ok, Y. Sam, H. Tan, Y. Dai, and C. Wang., 2020. Biochar for urban agriculture: impacts on soil chemical characteristics and on Brassica rapa growth, nutrient content and metabolism over multiple growth cycles. Science of The Total Environment. 727. https://doi.org/10.1016/j.scitotenv.2020.138742.

47. Su, Y., M. Wei, Q. Guo, J. Huang, K. Zhao, and J. Huang., 2023. Investigating the relationships between callus browning in Isatis indigotica Fortune, total phenol content, and PPO and POD activities. Plant Cell Tiss Organ Cult. 155: 175–182. https://doi.org/10.1007/s11240-023-02567-7.

48. Tuwo, M., Baharuddin, A. I. Latunra, A. Masniawati, and T. Kuswinanti., 2021. Effect of organic growth supplements on in vitro shoot regeneration of banana cv. barangan Musa acuminata Colla. Metamorfosa Journal of Biological Sciences. 2021. 8(1): 124-130. https://doi.org/10.24843/metamorfosa.2021.v08.i01.p13.

49. Tuwo, M., T. Kuswinanti, A. Nasruddin, and E. Tambaru., 2023. In vitro culture optimization of pomelo seeds (Citrus maxima (Burm.) Merr.): a south sulawesi orange. Pakistan Journal of Biological Sciences. 26(11): 576-585. https://doi.org/10.3923/pjbs.2023.576.585.

50. Wu, P., P. X. Cui, G. D. Fang, Y. Wang, S. Q. Wang, D. M. Zhou, W. Zhang, and Y. J. Wang., 2018. Biochar decreased the bioavailability of Zn to rice and wheat grains: Insights from microscopic to macroscopic scales. Sci Total Environ. 621:160-167. https://doi.org/10.1016/j.scitotenv.2017.11.236.

51. Wu, J., X. Fu, L. Zhao, Lv. Jin, Lv. Sidi, J. Shang, Lv. Jiaxuan, S. Du, H. Guo, and F. Ma., 2024. Biochar as a partner of plants and beneficial microorganisms to assist in-situ bioremediation of heavy metal contaminated soil. Science of The Total Environment. 923. https://doi.org/10.1016/j.scitotenv.202.171442.

52. Zahoor, A., X. Liu, Y. Liu, S. Liu, W. Yi, S. Sajnani, L. Tai, N. Tahir, B. Abdoulaye, Mahaveer, Y. Liu, Z. Rahman, M. Damizia, B. Caprariis., 2025. Agricultural lignocellulose biochar material in wastewater treatment: A critical review and sustainability assessment. Environmental Functional Materials. https://doi.org/10.1016/j.efmat.2024.12.005.

Downloads

Published

2025-10-27

Issue

Section

Articles

How to Cite

Tuwo, M., Fahruddin, Tambaru, E., Syam , N., Fadilah, N., & Jaga, S. (2025). BIOCHAR-SUPPLEMENTED IN VITRO CULTURE OF MUSA ACUMINATA VAR. BARANGAN TO CONTROL CONTAMINATION AND ENHANCE REGENERATION. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(5), 1812-1824. https://doi.org/10.36103/8kjabq68