EFFECT OF SOME NUTRIENTS MANAGEMENT PRACTICES AND LEACHING REQUIREMENTS ON SOIL QUALITY AND PRODUCTIVITY OF SORGHUM GROWN IN A SALT -AFFECTED SOIL
DOI:
https://doi.org/10.36103/bv6rsb83Keywords:
soil chemical properties , available soil nutrients ,( Sorghum bicolor L.), grain yieldAbstract
A field experiment was conducted at the research station of the Ministry of Agriculture in Abu Ghraib area –Baghdad, Iraq, to study the effect of applying some nutrients management practices and leaching requirements on some soil quality indicators and sorghum productivity under saline soil conditions. The experiment was laid out in randomized complete block design )RCBD( with split split plot arrangement and three replicates. Treatments included 7 nutrients combinations :(Control” F0”, NPK” F1”, NPKS” F2”, NPKS + micronutrients”F3”, NPKS+ micronutrients+ Nano silicon” F4”, NPKS+ micronutrients + Nano silicon + calcium and magnesium nitrate” F5”, NPKS + micronutrients + Nano silicon + potassium humates” F6”, two leaching requirements: standard leaching requirements (L1) and doubled leaching requirements (L2) ) and two sorghum varieties: Al-Khair synthetic variety (C1) and Rabeh synthetic variety(C2). The results showed that fertilizer treatments had a very important role in the availability of nutrients in the soil, where treatment F6 exceeded other treatments in flowering stage in increase the availability of (N,P and Si) (48.0, 32.43and 17.45 mg Kg-1) respectively, as well as in after harvest stage treatment F6 exceeded the other treatments in increase the availability of (N,K,Fe and Si) (26.9, 293.8, 3.21 and 15.49 mg Kg-1) respectively. Doubled leaching requirements (L2) exceeded (L1), which led to reducing the amount of NaCl salts in the soil for the depth of (25-50 cm). Proper nutrients management practices could improve soil properties, increase the availability of nutrients, and improve plant tolerance to abiotic stress such as soil salinity.
References
1. Akladious, S. A., and H. I. Mohamed., 2018. Ameliorative effects of calcium nitrate and humic acid on the growth, yield component and biochemical attribute of pepper (Capsicum annuum ) plants grown under salt stress. Scientia Horticulturae, 236, 244–250. https://doi.org/10.1016/j.scienta.2018.03.047
2. AL Mohammadi, S. M. and F. H. AL Mohammadi., 2012. Statistics and Experimental Design. Dar Osama for publication and distribution / Amman, Jordan. pp. 376.
3. Ali, N. S. and A. A. Shaker., 2018. Organic Fertilization and Its Role in Sustainable Agriculture . Scientific Book House and printing press together . Baghdad-Iraq,pp200.
4. Ali, N. S. H. S. Rahi and A. A. Shaker, 2014, Soil Fertility. House of scientific books for Printing, Publishing , Baghdad. Iraq. pp245.
5. Ali, N. S., Allawi M. M. and Majeed, N. H. 2022. Rhizosphere Management and Agricultural Sustainability. College of Agricultural Engineering Sciences. University of Baghdad ,Science Printing Office ,Baghdad ,Iraq .pp:323.
6. Alkharabsheh, H. M., M. F. Seleiman., O. A. Hewedy., M. L. Battaglia., R. S. Jalal., B. A. Alhammad., C. Schillaci., N. Ali and A. A. Al-Doss., 2021. Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A Review. Agronomy, 11(11), p2299.
https://doi.org/10.3390/agronomy11112299
7. Ampong, K., M. S. Thilakaranthna., and L. Y. Gorim., 2022. Understanding the Role of Humic Acids on Crop Performance and Soil Health. Frontiers in Agronomy, 4. P.848621. https://doi.org/10.3389/fagro.2022.848621
8. Aoda ,M.I. and N.T. Mahdi., 2017.Methods of Soil Physical Properties Analyses . Ministry of Higher Education and Scientific Research. Bookstore For Printing, Publishing & Translation .pp:224.
9. Balakrishna, D., R. Vinodh., P. Madhu., S. Avinash., P. Rajappa., and B. V. Bhat., 2019. Tissue Culture and Genetic Transformation in Sorghum bicolor. In Elsevier eBooks pp 115–130.
DOI:10.1016/B978-0-08-101879-8.00007-3
10. Batubara, S. F., N. Chairuman., V. Aryatiand D.R. Siagian. 2023. Effects of Micronutrients (Mn and Zn) Fertilizer on the Growth and Production of Sorghum (Sorghum bicolor L.). PLANTA TROPIKA, 11(2), pp.80-87. DOI:10.18196/pt.v11i2.15998
11. Ch., L. S., B. Mehera., D. Devalla., M. Kobagappu and P. K. Kavurik., 2023. Effect of Micronutrients on Growth and Yield of Sorghum (Sorghum bicolor L.). International Journal of Environment and Climate Change, 13(7), pp. 259–263.
doi: 10.9734/ijecc/2023/v13i71875.
12. De Carvalho, J. S., J. J. Frazão., R. De Mello Prado., R. De Mello Prado and M. G. Costa., 2022. Silicon modifies C:N:P stoichiometry and improves the physiological efficiency and dry matter mass production of sorghum grown under nutritional sufficiency. Scientific Reports, 12(1).
doi: 10.1038/s41598-022-20662-1
13. El-Bassiouny, H. M. S., B. A. Bakry., A. M. F. Attia., and M. S. H. Allah., 2014. Physiological Role of Humic Acid and Nicotinamide on Improving Plant Growth, Yield, and Mineral Nutrient of Wheat Grown under Newly Reclaimed Sandy Soil. Agricultural Sciences, 05(08), 687–700. DOI: 10.4236/as.2014.58072
14. El-Ramady, H., T. Alshaal., N. Elhawat., A. Ghazi., T. Elsakhawy., A. E. Omara., S. El-Nahrawy., M. Elmahrouk., N. Abdalla., E. Domokos-Szabolcsy., and E. Schnug., 2018. Plant Nutrients and Their Roles Under Saline Soil Conditions. In Springer Books pp 297–324. https://doi.org/10.1007/978-981-10-9044-8
15. El-Sagheer, M. E. M., and E. I. Mohamed., 2017. Response Of Two Sorgum Hybrids To Foliar Application Of Some Actevitores Under Two Levels Of Nitrogen. Alex. J. Agric. Sci, 62, 443–455. DOI:10.13140/RG.2.2.34662.14406
16. Guimarães, M., W. L. Simões., A. R. M. De Oliveira., G. G. L. De Araújo., E. Silva, Ê. F. De França and L. Willadino., 2019. Biometrics and grain yield of sorghum varieties irrigated with salt water. Revista Brasileira De Engenharia Agricola E Ambiental, 23(4), 285–290. DOI:10.1590/1807-1929/agriambi.v23n4p285-290
17. Hameed, M. A., N. S. Ali and H. M. Karim., 2023. Tolerance of two sorghum varieties to salinity using different nutritional practices and two leaching requirements. In IOP Conference Series: Earth and Environmental Science (Vol. 1262, No. 8, p. 082024). IOP Publishing. DOI 10.1088/1755-1315/1262/8/082024
18. Havlin, J. L., S. L. Tisdale., W. L. Nelson and J. D. Beaton., 2014. Soil Fertility and Fertilizers. Pearson Education India.pp:265. DOI: 9780135033739, 013503373X
19. Hurtado, A. C., D. A. Chiconato., R. De Mello Prado., G. Da Silveira Sousa., Junior, and G. Felisberto., 2019. Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. Plant Physiology and Biochemistry, 142, 224–233. https://doi.org/10.1016/j.plaphy.2019.07.010
20. Jasim, T. S. and B. Hamid., 2023.Effect of organic and Bio-fertilization on some soil physical properties planting by barley plant .Iraqi J. of Market Research and Consumers Protection. Accepted for Publication 199l4-3-2023. DOI:10.1088/1755-1315/1259/1/012031
21. Kaaria, K., J. Gweyi-Onyango and C. Muui,. 2023. Silicon amendment – influence on sorghum growth, yield, and nutrient uptake under water stress. Journal of Plant Nutrition, 46(18), pp.4357–4376. doi:https://doi.org/10.1080/01904167.2023.2222132.
22. Kapustin, S. I., A. B. Volodin., A. S. Kapustin, and N. V. Samokish., 2022. Evaluation of the quality of sweet sorghum fodder. iraqi journal of agricultural sciences, 53(5), 1184-1189.
DOI: https://doi.org/10.36103/ijas.v53i5.1632
23. Kugedera, A. T., G. Nyamadzawo., R. Mandumbu and L. Kokerai., 2022. Enhancing Sorghum bicolor (L.) grain yield with the use of field edge rainwater harvesting and NPK fertilizer in a dry region of Zimbabwe. Journal of Sustainable Agriculture and Environment, 2(1), 58–67. https://doi.org/10.1002/sae2.12034
24. Liang, Y., M. Nikolic., R. R. Bélanger., H. Gong and A. Song., 2015. Effect of Silicon on Crop Growth, Yield and Quality. In Springer eBooks pp. 209–223.
DOI:10.1007/978-94-017-9978-2_11
25. Magdoff, F, and H. V. ES., 2021. Building soils for better crops (Ecological management for healthy soils ). 4th Handbook series book 10, Published by the Sustainable Agriculture Research and Education (SARE) program, with funding from the National Institute of Food and Agriculture, U.S. Department of Agriculture. pp:255. DOI: 9781888626193, 1888626194
26. Masood, T. K. and N. S. Ali., 2023. Effect of Different Soil Organic Carbon Content in Different Soils on Water Holding Capacity and Soil Health. In IOP Conference Series: Earth and Environmental Science Vol. 1158, (2): 022035. IOP Publishing.
DOI:10.1088/1755-1315/1158/2/022035
27. Nizam, R., M. T. Hosain., M. E. Hossain., M. M. Islam and M. A. Haque., 2019. Salt stress mitigation by calcium nitrate in tomato plant. Asian Journal of Medical and Biological Research, 5(1), pp.87–93. doi:https://doi.org/10.3329/ajmbr.v5i1.41050.
28. Page, A.L. R.H. Miller and D.R. Keeney Ed., 1982. Methods of soil analysis part 2, 2nd (ed) Agron., 9, Publisher, Madison Wisconsin , USA. pp: 501-538.
29. Rahman, R., J. A. Sofi., I. Javeed., T. H. Malik., and S. Nisar., 2020. Role of Micronutrients in Crop Production. Int.J.Curr. Microbiol.App.Sci, 11, 2265–2287.
DOI: 10.20546/ijcmas
30. Reddy, N., and D. M. Crohn., 2014. Effects of soil salinity and carbon availability from organic amendments on nitrous oxide emissions. Geoderma, 235–236, 363–371.
https://doi.org/10.1016/j.geoderma.2014.07.022
31. Richards, A., 1954 Diagnosis and improvement of saline and alkali soils, Agriculture hand book no 60. USDA, U.S. Government Printing Office, Washington, DC. pp 196.
32. Roy, S. and N. Chowdhury., 2020. Salt stress in plants and amelioration strategies: A critical review. Abiotic Stress in Plants. IntechOpen. pp: 391. DOI:10.5772/intechopen.93552
33. Rupngam, T., P. Udomkun., T. Boonupara and P. Kaewlom., 2025. Soil–Plant Biochemical Interactions Under Agricultural Byproduct Amendments and Potassium Humate: Enhancing Soil Function and Bioactive Compounds in Sunflower Sprouts. Agronomy, 15(7), p.1651. doi:https://doi.org/10.3390/agronomy15071651.
34. Salih, H. M. and I. S. Salman., 2020. Guidance leaflet on Fertilizer Recommendations Ministry of Agriculture .pp:11.
35. Salim, S. J. and N. S. Ali., 2017. Manual of Chemical Analyzes of Soil, Water, Plant and Fertilizer .The University House of Printing, Publishing and Translation . Ministry of Higher Education and Scientific Research. University of Baghdad. pp277.
36. Serme, I., K. Ouattara., V. Logah., J. Taonda., S. Pale., C. Quansah and C. Abaidoo., 2015. Impact of tillage and fertility management options on selected soil physical properties and sorghum yield. International Journal of Biological and Chemical Sciences, 9(3), 1154. DOI:10.4314/ijbcs.v9i3.2
37. Tomaz, A., P. Palma., P. Alvarenga and M. C. Gonçalves., 2020. Soil salinity risk in a climate change scenario and its effect on crop yield. In climate change and soil interactions pp. 351-396. Elsevier. https://doi.org/10.1016/B978-0-12-818032-7.00013-8
38. Weldegebriel, R., T. Araya and Y. G. Egziabher., 2018. Effect of NPK and blended fertilizer application on nutrient uptake and use efficiency of selected sorghum (Sorghum bicolor (L.) Moench) varieties under rain-fed condition in Sheraro District, northern Ethiopia. Momona Ethiopian Journal of Science, 10(1), 140. DOI:10.4314/mejs.v10i1.10
39. Yossif, A. M., and S. Gezgin., 2020. Effects of Mono-Ammonium Phosphate and k-humate applications on grain yield and phosphorus uptake efficiency of bread wheat crop (Triticum aestivum L.). International Journal of Plant and Soil Science, 32(12), 52-61. DOI:10.9734/IJPSS/2020/v32i1230353
40. Zhu, Y., and H. Gong., 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development, 34(2), 455–472. https://doi.org/10.1007/s13593-013-019


2.jpg)
https://orcid.org/0000-0002-5774-5906