EVALUATION OF CO2, CH4, AND O3 GHGs FROM SATELLITES AGAINST GROUND-BASED MEASUREMENTS OVER SULAIMANI City, KR, IRAQ

Authors

  • W. J. Abdlrahman
  • P. M. Najmaddin
  • S. N. Majid

DOI:

https://doi.org/10.36103/9bw6vv52

Keywords:

greenhouse gases, satellite remote sensing, validation, ground measurement.

Abstract

This study was conducted from December 2021 to July 2022, except May 2022, and aimed to evaluate and validate CO2, CH4, and O3 GHGs in 13 different locations over Sulaimani city, Kurdistan Region-Iraq by means of remote sensing techniques from Sentinel 5 Precursor (S5P)/ TROPOMI and Orbiting Carbon Observatory-2 (OCO-2) satellites against ground-based measurements by using a  portable gases analyzer via three types of sensor heads, GSS  for the nominated gases of CO2, CH4, and O3. The Inverse Distance Weight (IDW) interpolation methods were used to map the CO2, CH4, and O3. The results of ground measurements showed high variability in some greenhouse gas concentration values and ranged between 285-508 ppm, 0-17000 ppb, and 0.25-64 ppb for CO2, CH4, and O3, respectively, in different locations and months. Satellite-predicted values for CO2, CH4, and O3 ranged between 416 - 418 ppm, 1858.99 - 1908.26, and 15.13 - 16.96 ppb, respectively, among the studied locations during the study periods. The RMSE ranged between 0.5 - 92.75 ppm, 99.11 – 2593.05 ppb, and 0.08 – 48.87 ppb for CO2, CH4, and O3, respectively.

References

1. Al-Madi, A. M. and M. L. Maina. 2013. The role of GIS and remote sensing in mapping the distribution of greenhouse gases. European Sci. J. 9 (36):404-410

2. Al-Taay, M. S. A., A. H. A. Al-Assie and R. O. Rasheed. 2018. Impact of bazian cement factory on air, water, soil, and some green plants in Sulaimani city-Iraq. Iraqi J. Agric. Sci. 49 (3):463-477. https://doi.org/10.36103/ijas.v49i3.118

3. America’s Children and the Environment 2015. Criteria air pollutants. Third Edition. p.1-5.

4. An, N., F. Mustafa, L. Bu, M. Xu, Q. Wang, M. Shahzaman, M. Bilal, S. Ullah and Z. Feng. 2022. Monitoring of atmospheric carbon dioxide over Pakistan using satellite dataset. Remote Sens. 14 (5882):1-19. https://doi.org/10.3390/rs14225882

5. Breon, F.-M. and P. Ciais. 2010. Spaceborne remote sensing of greenhouse gas concentrations. C. R. Geoscience. 342 (4-5):412-424. DOI: 10.1016/j.crte.2009.09.012

6. Chen, B., X. Yang and J. Xu. 2022. Spatio-temporal variation and influencing factors of ozone pollution in Beijing. Atmosphere. 13 (359):1-15. https://doi.org/10.3390/atmos13020359

7. Ciais, P., J. Tan, X. Wang, C. Roedenbeck, F. Chevallier, S.-L. Piao, R. Moriarty, G. Broquet, C. Le Quéré, J. G. Canadell, S. Peng, B. Poulter, Z. Liu and P. Tans. 2019. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature. 568 (7751):221-225. https://doi.org/10.1038/s41586-019-1078-6

8. Dewan, S. and A. Lakhani. 2022. Tropospheric ozone and its natural precursors impacted by climatic changes in emission and dynamics. Front. Environ. Sci. 10 (3389):1-21. https://doi.org/10.3389/fenvs.2022.1007942

9. Downie, R., J. Faris, H. Lam and L. Shirley. 2019. Estimation of carbon sequestration levels in trees for Canterbury plantings. 2019. Univ. Canterbury. Rep.p.17

10. Eldering, A., P. O. Wennberg, D. Crisp, D. S. Schimel, M. R. Gunson, A. Chatterjee, J. Liu, F. M. Schwandner, Y. Sun, C. W. O’dell, C. Frankenberg, T. Taylor, B. Fisher, G. B. Osterman, D. Wunch, J. Hakkarainen, J. Tamminen and B. Weir. 2017. The orbiting carbon observatory-2 early science investigations of regional carbon dioxide fluxes. Science. 358 (6360):1-8.

DOI: 10.1126/science.aam5745

11. EPA, Environmental Protection Agency. 2022. Importance of methane. Global methane initiative. Available at: https:// www.epa.gov/gmi/importance methane.

12. Fitzky, A. C., H. Sandén, T. Karl, S. Fares, C. Calfapietra, R. Grote, A. Saunier and B. Rewald. 2019. The interplay between ozone and urban vegetation—BVOC emissions, ozone deposition, and tree ecophysiology. Front. For. Glob. Change. 2 (50):1-17. https://doi.org/10.3389/ffgc.2019.00050

13. Fletcher, S. E. M., P. P. Tans, L. M. Bruhwiler, J. B. Miller and M. Heimann. 2004. CH4 sources estimated from atmospheric observations of CH4 and its. Glob. Biog. Cycl. 18 (1):1-17.

14. Guo, H., M. F. Goodchild and A. Annoni, 2020. Manual of digital Earth. Sprin. Nature.p:1-849

15. Hansen, J., R. Ruedy, M. Sato and K. Lo. 2010. Global surface temperature change. Rev. Geophys. 48 (4):1-29

16. Hardwick, S. and H. Graven. 2016. Satellite observations to support monitoring of greenhouse gas emissions. Granth. Instit. 16:2-16

17. IPCC, Intergovernmental Panel on Climate Change. 2013. Climate change 2013: The physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge Univ. Press.

18. IPCC, Intergovernmental Panel on Climate Change. 2017. IPCC fourth assessment report: climate change 2007: working group I: the physical science basis TS.2.1greenhouse. Gaseshttps://archive.ipcc.ch/publications_and_data/ar4/wg1/en/tssts-2-1.html.

19. Kasparoglu, S., S. Incecik and S. Topcu. 2018. Spatial and temporal variation of O3, NO and NO2 concentrations at rural and urban sites in Marmara Region of Turkey. Atmos. Pollut. Res. 9 (6):1009-1020. https://doi.org/10.1016/j.apr.2018.03.005

20. Kinney, P. L. 2018. Interactions of climate change, air pollution, and human health. Curr. Envir. Health Rpt. p.5. 179–186. https://doi.org/10.1007/s40572-018-0188-x

21. Lacour, S. A., M. De Monte, P. Diot, J. Brocca, N. Veron, P. Colin and V. Leblond. 2006. Relationship between ozone and temperature during the 2003 heat wave in France: consequences for health data analysis. BMC. Pub. Health. 6 (1):1-8. https://doi.org/10.1186/1471-2458-6-26

22. Li, K., D. J. Jacob, L. Shen, X. Lu, I. De Smedt and H. Liao. 2020. Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences. Atmos. Chem. Phys. 20 (9):11423-11433. https://doi.org/10.5194/acp-20-11423-2020

23. Li, S., Y. W. Siu and G. Zhao. 2021. Driving factors of CO2 emissions: further study based on machine learning. Front. Environ. Sci. 323 (9):1-16. https://doi.org/10.3389/fenvs.2021.721517

24. Lopez, M., M. Schmidt, M. Ramonet, J.-L. Bonne, A. Colomb, V. Kazan, P. Laj and J.-M. Pichon. 2015. Three years of semicontinuous greenhouse gas measurements at the Puy de Dôme station (central France). Atmo. Measu. Techn. 8 (9):3941-3958. https://doi.org/10.5194/amt-8-3941-2015

25. Mahal, S. H., A. M. Al-Lami and F. K. Mashee. 2022. Assessment of the impact of urbanization growth on the climate of Baghdad province using remote sensing techniques. Iraqi J. Agric. Sci. 53 (5):1021-1034. https://doi.org/10.36103/ijas.v53i5.1616

26. Majid, S. N. 2011. Valuation of ambient air pollution: a study of some urban areas in Sulaimani city and its surrounding/Kurdistan region of Iraq. Univer. Sulaimani. p.277

27. Mirzaei, R. and M. Sakizadeh. 2016. Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran. Envir. Sci. Pollut. Res. 23 (3):2758-2769. https://doi.org/10.1007/s11356-015-5507-2

28. Mohammed, Y. H., S. N. Majid and P. M. Najmaddin. 2022. Ambient particulate matter concentrations for difference size from MODIS satellite images and ground measurements in Sulaimani, Iraq. Appli. Ecolo. Envir. Sci.10 (10):622-639

29. Najmaddin, P. M., N. B. Salih and T. A. Abdalla. 2020. Evaluating the spatial distribution of some soil geotechnical properties using various interpolation methods (case study: Sulaimani province, Iraq). J. Soil Sci. Agric. Eng. 11 (7):275-281

30. Najmaddin, P. M., M. J. Whelan and H. Balzter. 2017. Application of satellite-based precipitation estimates to rainfall-runoff modelling in a data-scarce semi-arid catchment. Climate. 5 (32):1-22. https://doi.org/10.3390/cli5020032

31. NOAA, National Oceanic and Atmospheric Administration. 2022. Trends in atmospheric carbon dioxide; Maunaa Loa CO2 record. U.S. Department of commerce, global monitoring division. Available at: https://gml.noaa.gov/ccgg/trends/.

32. Pan, H. 2020. Cloud removal for remote sensing imagery via spatial attention generative adversarial network. ArXiv. abs/2009.13015:1-7.

https://doi.org/10.48550/arXiv.2009.13015

33. Prudyus, I., V. Tkachenko, P. Kondratov, S. Fabirovskyy, L. Lazko and A. Hryvachevskyi. 2015. Factors affecting the quality of formation and resolution of images in remote sensing systems. Compu. Pro. Elec. Eng. 5 (1):41-46. http://nbuv.gov.ua/UJRN/CPoee_2015_5_1_10

34. Ravishankara, A. R., J. S. Daniel and R. W. Portmann. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science. 326 (5949):123-125. DOI: 10.1126/science.1176985

35. Reynolds, R. F., W. L. Bauerle and Y. Wang. 2009. Simulating carbon dioxide exchange rates of deciduous tree species: evidence for a general pattern in biochemical changes and water stress response. Anna. Bot. 104 (4):775-784. https://doi.org/10.1093/aob/mcp156

36. Rigby, M., R. G. Prinn, S. O'doherty, B. R. Miller, D. Ivy, J. Mühle, C. M. Harth, P. K. Salameh, T. Arnold, R. F. Weiss, P. B. Krummel, L. P. Steele, P. J. Fraser, D. Young and P. G. Simmonds. 2014. Recent and future trends in synthetic greenhouse gas radiative forcing. Geophys. Res. Lett. 41 (7):2623-2630. https://doi.org/10.1002/2013GL059099

37. Robinson, T. R., N. Rosser and R. J. Walters. 2019. The spatial and temporal influence of cloud cover on satellite-based emergency mapping of earthquake disasters. Sci. Rep. 9 (1):1-9. https://doi.org/10.1038/s41598-019-49008-0

38. Sarangi, T., M. Naja, N. Ojha, R. Kumar, S. Lal, S. Venkataramani, A. Kumar, R. Sagar and H. C. Chandola. 2014. First simultaneous measurements of ozone, CO, and NOy at a high‐altitude regional representative site in the central Himalayas. J. Geophys. Res. Atmos. 119 (3):1592-1611. https://doi.org/10.1002/2013JD020631

39. Sekiya, T. and K. Sudo. 2012. Role of meteorological variability in global tropospheric ozone during 1970–2008. J. Geophys. Res. 117 (D18):1-16. https://doi.org/10.1029/2012JD018054

40. Sillman, S. 1999. The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmos. Envir. 33 (12):1821-1845. https://doi.org/10.1016/S1352-2310(98)00345-8

41. Sulaymaniyah Governorate Profile 2015. Sulaymaniyah governorate profile – NCCI

Downloads

Published

2025-10-27

Issue

Section

Articles

How to Cite

Abdlrahman, W. J., Najmaddin, P. M., & Majid, S. N. (2025). EVALUATION OF CO2, CH4, AND O3 GHGs FROM SATELLITES AGAINST GROUND-BASED MEASUREMENTS OVER SULAIMANI City, KR, IRAQ. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(5), 1747-1763. https://doi.org/10.36103/9bw6vv52