PHYLOGENETIC RELATIONSHIP ANALYSIS OF THREE SPECIEOF ROSA L.,1735 CULTIVATED IN IRAQ BASED ON ITS, matK and trnT-trnL PRIMERS

Authors

  • Liqaa A. Jazaa
  • Bushra M. J. Alwash

DOI:

https://doi.org/10.36103/c2gfe522

Keywords:

Molecular identification, rosaceae, plastid primers.

Abstract

This study was investigate to demonstrate the phylogenetic relationship among three species of Rosa that are  R. canina L.,1735, R. damascene Mill. and R. centifolia L., cultivated in Iraq by using three primers of ITS, matK and trnL. With regard to the  nuclear ITS sequencing reaction results showed that the identified identities of the investigated samples were R. canina, R. damascena, and R. centifolia the presence of seven nucleic acid variants (g.392G>T, g.439G>A, g.442T>G, g.458C>T, g.477C>T, g.495T>C, and g.496C>T) of  R. canina sample, one nucleic acid variant (g.15A>C) in R. centifolia sample compared with the referring sequences respectively (GenBank acc. no. MT796505.1 and MZ230175.1). Sequencing reaction results for the matK amplicons revealed that the samples under investigation were R. canina, R. damascena, and R. centifolia. This finding suggested the presence of two nucleic acid variations (g.165C>T and g.687G>T) of the R. centifolia sample compared with the referring sequences (GenBank acc. no. MZ261886.1). These amplicons be could quickly and accurately identify the biological diversity of a larger genotype of Rosa sequences.

References

1. Ali, Z. A. 2020. A Comparative Taxonomic Study of Seeds of Some Plants of Rosaceae Family in Iraq. Plant Archives, 20: 589- 595.

2. Al-Mayah, A. A., 2013. Medicinal Plants and Herbal Therapy. College of Science, University of Basrah. Pp. 172-174.

3. Al-qaysi, Safaa Al-deen Ahmed Shanter and Adel Hamdan Alwan., 2016. Molecular identification of rhizosphere Trichoderma spp. and their antagonistic impact against some plant pathogenic fungi. Baghdad Science Journal, 13(1): 53-65. http://dx.doi.org/10.21123/bsj.2016.13.1.0053

4. Al-Rawi , Ali and H. L. Chakravrty., 2014. Medicinal Plants of Iraq. Ministry of Agriculture. Irqi National Herbarium. 3th. Edit., Minitery of Agrigulture, Iraq National Herbarium: “pp. 82-83”.

5. Benson, D. A.; M. Cavanaugh; K. Clark and et al. 2016. GenBank. Nucleic acids research. 28;45(D1):D37-42.

6. Bruneau, A.; J. R. Starr, and S. Joly., 2007. Phylogenetic relationships in the genus Rosa: New evidence from chloroplast DNA sequences and an appraisal of current knowledge. Syst. Bot., 32(2):366–378. https://doi.org/10.1600/036364407781179653

7. Davidson R and A. Martín del Campo., 2020. Combinatorial and computational investigations of neighbor-joining bias. Front. Genet. 11:584785. https://doi.org/10.3389/fgene.2020.584785

8. EL-Banhawy, A.; C. Acedo ; S. Qari and A. Elkordy., 2020. Molecular identification and phylogenetic placement of Rosa arabica Crép. (Rosaceae), a Critically Endangered Plant Species. Life, 10: 335. https://doi.org/10.3390/life10120335

9. Elhawary, E.A.; N. M. Mostafa; R. M. Labib and A. N. Singab., 2021. Metabolomic profiles of essential oils from selected Rosa varieties and their antimicrobial activities. Plants, 10, 1721. https://doi.org/10.3390/plants10081721

10. Fougere- Danezan, M., S.; Joly, A. Bruneau, X. F.; Gao, and L. B. Zhang, 2015. Phylogeny and biogeography of wild roses with specific attention to polyploids. Annals of Botany, 115: 275–291. https://doi.org/10.1093/aob/mcu245

11. Guan, B.; J. Wen; H. Guo and Y. Liu., 2024. Comparative and phylogenetic analyses based on the complete chloroplast genome of Cornus subg. Syncarpea (Cornaceae) species. Front. Plant Sci. 15:1306196. https://doi.org/10.3389/fpls.2024.1306196

12. Haider, N., 2011. Chloroplast-specific universal primers and their uses in plant studies. Biologia Plantarum, 55 (2): 225-236. https://doi.org/10.1007/s10535-011-0033-7

13. Jian, H. Y.; L. Zhao; H. Zhang and et al. 2022. Phylogeography and population Ggenetics of Rosa chinensis var. spontanea and R. lucidissima complex, the important ancestor of modern Roses. Front. Plant Sci. 13:851396. https://doi.org/10.3389/fpls.2022.851396

14. Kovacheva, N.; K. Rusanov, and I. Atanassov, 2010. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21ST Century, directions and challenges, Biotechnology & Biotechnological Equipment, 24 (2): 1793-1798. https://doi.org/10.2478/V10133-010-0032-4

15. Li, J.; S. Wang; J. Yu and et al. 2013. A modifed CTAB protocol for Plant DNA extraction. Chin Bull Bot 48:72–78. https://doi. org/10.3724/SP.J.1259.2013.00072

16. Pham, T.; Q. T. Nguyen ; D. M. Tran and et al. 2022. Phylogenetic Analysis Based on DNA Barcoding and Genetic Diversity Assessment of Morinda officinalis How in Vietnam Inferred by Microsatellites. Genes 2022, 13, 1938. https://doi.org/10.3390/genes13111938

17. Qiu, X. Q.; H. Zhang; Q. G. Wang and et al. 2012. Phylogenetic relationships of wild roses in China based on nrDNA and matK data. Sci. Hort., 140:45–51. https://doi.org/10.1016/j.scienta.2012.03.014

18. Scibetta, S.; L. Schena,; A. Abdelfattah and et al. 2018. Selection and experimental evolution of universal primers to study the fungal microbiom of higher plants. Phytobiomes Journal, 2(4): 225-236. https://doi.org/10.1094/PBIOMES-02-18-0009-R

19. Sevindik, E. and K. Okan, 2020. Genetic diversity and phylogenetic analyzes of Laurus nobilis L. (Lauraceae) populations revealed chloroplast (cpDNA) trnL Intron and trnL-F Region. International Journal of Fruit Science, 20( S2): S82-S93. https://doi.org/10.1080/15538362.2019.1707745

20. Shahbaz, S. Esmael., 2010. Trees and Shrubs. Univesity of Duhok Publication. “pp. 131-149’’.

21. Shulaev, V.; S. S. Korban ; B. Sosinski and et al. 2008 . Multiple Models for Rosaceae Genomics. Plant Physiology, 147: 985–1003. https://doi.org/10.1104/pp.107.115618

22. Sinjare, D. Y. and J. M. Jubrael., 2023. PCR-RFLP analysis of the 16S rRNA and ITS regions in bacterial blight (Xanthomonas axonopodis pv. punicae) across pomegranate farms in Kurdistan regions-Iraq. Iraqi Journal of Agricultural Sciences , 54(2):339- 347. https://doi.org/10.36103/ijas.v54i2.1707

23. Suprun, I. I.; S. A. Plugatar; I. V. Stepanov, and T.S. Naumenko., 2020. Analysis of genetic relationships of genotypes of the genus Rosa L. from the collection of Nikita Botanical Gardens using ISSR and IRAP DNA markers. Вавиловский журнал генетики и селекции, 24(5):474-480.

doi. 10.18699/VJ20.639

24. Taberlet, P.; E. Coissac,; F. Pompanon and et al. 2007 . Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35(3): e14. https://doi.org/10.1093/nar/gkl938

25. Townsend, C. C. and E. Guest., 1966. Flora of Iraq (vol. 2). Ministry of Agriculture Republic of Iraq. pp. 141-151.

26. Verhoeven, H. A.; J. Blaas and W. A. Brandenburg., 2003. Fragrance and pigments| fragrance profiles of wild and cultivated Roses. Encyclopedia of Rose Science. “pp. 240-248”.

27. Vukosavljeva, M.; J. Zhanga; G. D. Esselinka; W. P. C. Westendea and et al. 2013 . Genetic diversity and differentiation in roses: A garden rose perspective. Scientia Horticulturae 162) 320–332. http://dx.doi.org/10.1016/j.scienta.2013.08.015

28. Wang, H.; Y. Yang; M. Li ; J. Liu and W. Jin., 2017. Residents’ preferences for roses, features of rose plantings and the relations between them in built-up areas of Beijing, China. Urban Forestry & Urban Greening, 27 : 1–8. http://dx.doi.org/10.1016/j.ufug.2017.06.011

29. Wissemann, V. and C. M. Ritz., 2005. The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Botanical Journal of the Linnean Society, 147:275–290. https://doi.org/10.1111/j.1095-8339.2005.00368.x

30. Yin, X. ; B. Liao,; S. Guo and et al. 2020. The chloroplasts genomic analyses of Rosa laevigata, R. rugosa and R. canina. Chin Med, 15:18.

https://doi.org/10.1186/s13020-020-0298-x

31. Yu, J.; X. Wu,; C. Liu; Newmaster, S. and et al. 2021. Progress in the use of DNA barcodes in the identification and classification of medicinal plants. Ecotoxicology and Environmental Safety, 208 : 111691. https://doi.org/10.1016/j.ecoenv.2020.111691

32. Yu, J.; J. Xue and S. Zhou., 2011. New universal matK primers for DNA barcoding angiosperms Journal of Systematics and Evolution 49 (3): 176–181 . 10.1111/j.1759-6831.2011.00134.x

33. Zhang, Z.; S. Schwartz; L. Wagner and W. Miller., 2000. A greedy algorithm for aligning DNA sequences. J Comput Biol. 7(1-2):203-14. https://doi.org/10.1089/10665270050081478

34. Zhu, Z. M.; X. F. Gao and M. Foug_ere-Danezan., 2015. phylogeny of Rosa sections chinenses and stynstylae (Rosaceae) based on chloroplast and nuclear markers. Mol. Phylogenet. Evol. , 87:50–64. 1624. https://doi.org/10.1016/j.ympev.2015.03.014

Downloads

Published

2025-10-27

Issue

Section

Articles

How to Cite

Jazaa, L. A., & Alwash, B. M. J. (2025). PHYLOGENETIC RELATIONSHIP ANALYSIS OF THREE SPECIEOF ROSA L.,1735 CULTIVATED IN IRAQ BASED ON ITS, matK and trnT-trnL PRIMERS. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(5), 1737-1746. https://doi.org/10.36103/c2gfe522