USE OF RAPD IN DETERMINING THE GENETIC RELATIONSHIP BETWEEN SOME SPECIES OF FAMILY PLANTS CUCURBITACEAE GROWING IN IRAQ
DOI:
https://doi.org/10.36103/wa1pm670Keywords:
molecular taxonomy, markers, genetic diversity, Cucurbita, Cucumis, Citrullus, Luffa.Abstract
This research was done to conducted to determine TEN taxa of the Cucurbitaceae family were studied using the RAPD approach to examine taxonomic relationships and genetic diversity, including Cucurbita pepo, Cucurbita maxima, Laganaria siceramia L.C.V. local, Laganaria siceramia L.C.V. Syria, Cucumis sativus, Cucumis melo, Cucumis melo flexuosus, Citrullus lanatus, Citrullus colocynthis, Luffa cylidrica, DNA of fresh leaves was extracted using modified protocol of Kit due, invested DNA Marker based PCR technology using the RAPD Marker using Thirteen RAPD primers of (Operon) technology biologging to (Bio-RP1, Bio-RP2, Bio-RP3, Bio-RP4, Bio-RP5, Bio-RP6, Bio-RP7, Bio-RP8, Bio-RP9, Bio-RP10, UBC-13, OPC-12) sets. , where explained the relationship between taxa on the basis of the appearance and disappearance of the bands and showed that differences in the location on the genomes of the studied cultivars on the agarose gel .As the primers generated (92) total bands resulting from (225) binding sites ,including (92 ) polymorphic binding sites distinct for the cultivars under study . To determine the interspecific among the investigated taxa, cluster analysis of the diversity matrices was carried out.
References
1. Al-Anbari A., M. AL-Zubadiy, and W. Dawood., 2015. Genetic diversity of some taxa of Cucurbitaceae family based on “RAPD” markers. Advances in Life Science and Technology. ISSN 2224-7181 (Paper) ISSN 2225-062X (Online)Vol.37,pp7-11.
2. Al-Anbari, A. and A. Zaidi., 2024. Phylogenetic taxonomy among Iraqi cacti taxa by using RAPD markers. Journal of Bioscience and Applied Research, 2024, Vol.10, No. 5, P. 68-74 pISSN: 2356-9174, eISSN: 2356-9182 68 (Conference Special Issue) The Third International Scientific Conference for Pathological Analyses, College of Science, University of Basrah, Iraq (ISCPA 3) February 14 – 15, 2024.
DOI: 10.21608/jbaar.2024.395703
3. Al-Sheikh, W. and Z. Alrufaye., 2020. Using RAPD marker in analysis of the genetic diversity of Article· Karbala Scientific Journal. 16. 207-214.
4. Asaggaf, R., M., N. Al-Ghamdi, N. Al- Harbi, Al-Suhimi and S. Sarawi, 2009. Molecular identification of Bougainvillea in Jeddah.International Journal of Herbal Medicine. 7(4):34-35.
5. Babu, P., K.Rajesh, and S. Kukkamgai, 2014. Randomly amplified polymorphic DNA (RAPD) and derived techniques. Methods in molecular biology. 1115:191-209.
DOI: 10.1007/978-1-62703-767-9_10
6. Besse P., 2014. Molecular Plant Taxonomy: Methods and Protocols, Methods in Molecular Biology, vol.1115, Springer Science – Business Media New York. 402. https://doi.org/10.1007/978-1-62703-767-9
7. Chan K. and M. Sun, 1997. “Genetic diversity and relationships detected by isozyme and RAPD analysis of crop and wild species of Amaranthus”. Theor. Appl. Genet. 95: 865- 873. 10.1007/s001220050637
8. Chen, L., Q. Gao, D. Chen, and CH. Jie, 2005. The use of RAPD markers for detecting genetic diversity, relationship and molecular identification of Chinese elite tea genetic resources [Camellia sinensis (L.) O. Kuntze] preserved in a tea germplam repository. XU3Biodiversity and Conservation 14: 1433–1444. DOI 10.1007/s10531-004-9787-y
9. Gong, L., G. Stift, R. Kofler, , Pachner, M. and T. Lelley, 2008. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet.;117(1):37-48. Doi: 10.1007/s00122-008-0750-2. Epub 2008 Apr 1. PMID: 18379753; PMCID: PMC2413107.
10.Guo J., W. Xu, Y. Hu, and et al. 2020. Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Mol Plant;13:1117–33. https://doi.org/10.1016/j.molp.2020.05.011
11. Hadia H. A., A. H. Abdel-Razzak, and E. E. Hafez, 2008. Assessment of Genetic Relationships among and Within Cucurbita Species Using RAPD and ISSR markers. Journal of Applied Sciences Research, 4(5): 515-525.
© 2008, INSInet Publication
12. Huang, H., Z. Peng, Sh. Zhan, W. Li, D. Liu, S. Huang, Y. Zhu, W. and Wang, 2024. A comprehensive review of Siraitia grosvenorii (Swingle) C. Jeffrey: chemical composition, pharmacology, toxicology, status of resources development, and applications. Frontiers in Pharmacology.
DOI 10.3389/fphar.2024.1388747
13. Ma, L., Q. Wang, Y. Zheng, J. Guo, Sh. Yuan, A. Fu, Ch. Bai, X. Zhao, X. Zheng, Ch. Wen, Sh. Guo, L. Gao, D. Grierson, J. Zuo, and Y. Xu, 2022. Cucurbitaceae genome evolution, gene function, and molecular breeding. Horticulture Research, Volume 9, Article uhab057.
DOI: 10.1093/hr/uhab057
14. Meghwal, P. R., A. Singh, P. Kumar, and B. R. Morwal, 2014. Diversity, distribution and horticultural potential of Cordia myxa L.: a promising underutilized fruit species of arid and semi-arid regions of India. Genet Resour Crop Evol 61:1633–1643.
DOI 10.1007/s10722-014-0161-y
15. Mukherjee, P., S. Singha, A. Kar, J. Chand, S. Banerjee, B. Das Gupta, P. Halda, and N. Sharma, 2022. Therapeutic importance of Cucurbitaceae: A medicinally important family. Journal of Ethnopharmacology 282(1–2):114599.
DOI: 10.1016/j.jep.2021.114599
16. Murray, M. and W. Thompson, 1980.Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research,8, (Issue 19): Pages 43214326.
https://doi.org/10.1093/nar 8.19.4321
17. Nebauer, S., L. Castillo-Agudo, and J. Segura, 1999. RAPD variation within and among natural populations of outcrossing willow-leaved foxglove (Digitalis obscura L.). Theor Appl Genet 98, 985–994.
https://doi.org/10.1007/s001220051159
18. Nei, M. and W. Li, 1979. Mathematical model for studying genetic variation in term of restriction endonucleases. Proceedings of the National Academy of Sciences .76(10):5269-5273.
10.1073/pnas.76.10.5269
19. Olmstead, R., 2004. Plant Systematics: A Phylogenetic Approach, 2nd ed.--W. S. Judd, C. S. Campbell, E. A. Kellogg, P. F. Stevens, and M. J. Donoghue. 2002. Sinauer Associates, Sunderland, MA. 576 pp. ISBN 0-87893-403-10.1080/10635150490445878.
20. Öztürk, H., V. Dönderalp, H. Bulut, et al.2022. Morphological and molecular characterization of some pumpkin (Cucurbita pepo L.) genotypes collected from Erzincan province of Turkey. Sci Rep 12, 6814. https://. doi.org/10.1038/s41598-022-11005-1
21. Paris, H., V. Portnoy, N. Mozes-Daube, G. Tzuri, N. Katzir, and N. Yonash, 2004. AFLP, ISSR, and SSR polymorphisms are in accordance with botanical and cultivated plant taxonomies of the highly polymorphic cucurbita pepo. Acta Horticulturae 634(634):167-173. DOI:10.17660/ActaHortic.2004.634.20
22. Paris, H., N. Nissim Yonash, V. Portnoy, N. G. Mozes-Daube, G. Tzuri, and N. Katzir, 2003. Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theoretical and Applied Genetics 106(6):971-8. DOI: 10.1007/s00122-002-1157-0
23. Probojati, R. ., D. Wahyudi, and L. Hapsari, 2019. Clustering Analysis and Genome Inference of Pisang Raja Local Cultivars (Musa spp.) from Java Island by Random Amplified Polymorphic DNA (RAPD) Marker. Journal of Tropical Biodiversity and Biotechnology Volume 04, Issue 02: 42 — 53. 10.22146/jtbb.44047
24. Roberts, E. M., I. Agbagwa, and B. Okoli, 2018. Genetic Diversity and RAPD-Based DNA Fingerprinting of Some Members of the Cucurbitaceae in Nigeria. Journal of Advances in Biology and Biotechnology · https://www.researchgate.net/publication/362593397. DOI: 10.9734/JABB/2018/40081
25. Schaefer H., C. Heibl, and S. S. Renner, 2009. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc R Soc B. 276:843 – 51.
10.1098/rspb.2008.1447
26. Senapati, A., S. Basak, and L. Rangan, 2022. A Review on Application of DNA Barcoding Technology for Rapid Molecular Diagnostics of Adulterants in Herbal Medicine. Drug Safety, 45(3), 193–213. https://doi.org/10.1007/s40264-021-01133-4
27. Senapati, A., B., Chetri, S. Mitra, R. G. Shelke, and L. Rangan, 2023. Decoding the complete chloroplast genome of Cissus quadrangularis: insights into molecular structure, comparative genome analysis and mining of mutational hotspot regions. Physiology and Molecular Biology of Plants. https://doi.org/10.1007/s12298-023-01312-w
28. Shukla, S., A. Bhargava, A. Chatterjee, A. Srivastava, and S. Singh, 2006. Genotypic variability in vegetable amaranth (Amaranthus tricolor L for foliage yield and its contributing traits over successive cuttings and years. Euphytica 151,103–110. https://doi.org/10.1007/s10681-006-9134-3
29. Sikdar B., M. Bhattacharya, A. Mukherjee, A. Banerjee, E. Ghosh, B. Ghosh, and S. Roy, 2010. Genetic diversity in important members of Cucurbitaceae using isozyme, RAPD and ISSR markers. Biological Plantarum 54 (1): 135-140. 10.1007/s10535-010-0021-3
30. Sneath P. and A. Sokal, 1973. Numerical taxonomy the principles and practice of numerical classification. H. Freeman and Co., San Francisco. Medical Research Council Microbial Systematics Unit, Univ. Leicester, England and Dept. Ecology and Evolution, State Univ. New York, Stony Brook, NY.LS. V.30, 573. p. https://www.scirp.org/reference/referencespapers?referenceid=1985747
31. Souframanien J. and T. Gopalakrishna, 2004. Acomparative analysis of genetic diversity in black gram genotypes using RAPD and ISSR markers. - Theor. Appl. Genet. 109: 1687-1693.
10.1007/s00122-004-1797-3
32. Staub, J., F. Dane, K. Reitsma, G. Fazio, and A. López-Sesé, 2002. The Formation of Test Arrays and a Core Collection in Cucumber Using Phenotypic and Molecular Marker Data. Journal of the American Society for Horticultural Science 127(4).
DOI: 10.21273/JASHS.127.4.558
33. Steel, M., and D. Penny, 2000. Parsimony, Likelihood, and the Role of Models in Molecular Phylogenetics. Molecular Biology and Evolution, 17(6),839–850. https://doi.org/10.1093/oxfordjournals.molbev.a026364
34. Tamura, K., G. Stecher, and S. Kumar, 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7),3022–3027. https://doi.org/10.1093/molbev/msab120
35. Thormann C., M. Ferreira, L. Camargo, J. Tivang, and T. Osborn, 1994. Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor. Appl. Genet., 88: 973-980.
https://doi.org/10.1007/BF00220804
36. Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22):6531-6535
https://doi.org/10.1093/nar/18.22.6531 .
37. Weiguo Z. and P. Yile, 2004. Genetic diversity of genus Morus revealed by RAPD markers.Int.Agri.Biol.,6(6):950-955.
10.1186/1471-2156-5-1
38. Wallace, R. and A.Gibson, 2002. Evolution and systematics. Pp. 1-21 in Nobel, P. S. (ed.), Cacti: Biology and Uses. University of California Press, Berkeley. pp.1-21. 10.1525/california/9780520231573.003.0001
39. Watson, L. and M. Dallwitz, 1992. The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval.
40. Williams, J., C. Kubelik, K. Livak, J. Rafalski, and S. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Res., 18: 6531-6535.
10.1093/nar/18.22.6531


2.jpg)
https://orcid.org/0000-0002-5774-5906