DETECTION OF SOME BIOFILM FORMATION GENES AND THEIR ROLE IN ANTIMICROBIAL RESISTANCE OF UROPATHOGENIC Escherichia coli

Authors

  • Reyam H. A.
  • Aida H. I.

DOI:

https://doi.org/10.36103/wwdz9b74

Keywords:

UPEC, fimH, fimA, UTI, antimicrobials.

Abstract

This study was aimed to evaluate the antimicrobial resistance, biofilm formation and some type 1 fimbriae adhesion genes. A total of 120 urine specimens were obtained from different patients with UTIs during October 2022 to February 2023 from several Baghdad hospitals. Morphological, biochemical and molecular tests were utilized for identifying E. coli isolates. The results were shown that only 80 (66.7%) of isolates were identified as E. coli. Twelve antimicrobial discs were utilized for evaluate the ability of E. coli isolate to resistant these antimicrobials. The results revealed that 98.8% of isolates were resistant to Ampicillin (AMP), followed by 81.3, 77.5, 72.5, 70, 60 and 58.8 of isolates were resistant to Cefepime (FEP), Ceftazidime (CAZ), Tigecycline (TGC), Ciprofloxacin (CIP), Trimethoprim - Sulfamethoxazole (SXT) and Aztreonam (ATM), respectively. All isolates were sensitive to Fosfomycin (FOF) and Amikacin (AMK) as well as the majority of isolates (97.5, 72.5 and 43.8%) were sensitive to Imipenem (IMP), Nitrofurantoin (NIT) and Piperacillin- tazobactam (TZP). A 50 isolates were selected as multi-drug resistant isolates. The biofilm formation of E. coli was measured using microtiter plates. The majority of isolates (55%; n=44) were moderate biofilm producers, while 38.75% (n=31) were strong producers and 5 (6.25%) were weak producers. The molecular detections of fimH and fimA genes were performed with specific primers using PCR technique. The results indicated that all isolates carry both the fimH and fimA genes.

References

1. Abd Alaziz, M. H. A. D., S. H., Al Abbadi, N. A. M., Abd Al Rahman, and H. I. Abd El-Hady. 2025. Invasiveness and virulence factors of uropathogenic Escherichia coli. Zagazig University Medical Journal, 31(1), 288–293.

DOI: 10.21608/zumj.2024.324518.3603

2. Ahmed, H. O. and L. A. Yaaqoob., 2025. Evaluation of antibacterial activity of nickel oxide nanoparticles against Escherichia coli. Iraqi Journal of Agricultural Sciences, 56(1), 502–511. DOI: https://doi.org/10.36103/aws0zt84

3. Al-Guranie, D. R. and S. M. Al-Mayahie, 2020. Prevalence of E. coli ST131 among Uropathogenic E. coli isolates from Iraqi patients in Wasit Province, Iraq. International Journal of Microbiology, 3(4): 202-207. DOI: https://doi.org/10.1155/2020/8840561

4. Alizade, H., 2018. Escherichia coli in Iran: An overview of antimicrobial resistance: A review article. Iranian Journal of Public Health, 4(7): 123-129. DOI: PMC5756583.

5. Alreshidi, M. A., 2025. Molecular epidemiology and antimicrobial resistance in uropathogenic Escherichia coli in Saudi Arabian healthcare facilities. Microbiology Research, 16(4), 73. DOI: https://doi.org/10.3390/microbiolres16040073.

6. Arredondo-Alonso, S., A. K., Pöntinen, J. A., Gama, R. A., Gladstone, K., Harms, G., Tonkin-Hill, H. A., Thorpe, G. S., Simonsen, Ø., Samuelsen, and P. J. Johnsen., 2025. Plasmid-driven strategies for clone success in Escherichia coli. Nature Communications, 16(1), 2921. DOI: https://doi.org/10.1038/s41467-025-57940-1.

7. Ashraf, Z., M. H., Rasool, B., Aslam, H., Ejaz, F., Mujahid, and M. Khurshid. 2025. Dynamics of urinary tract infections: a comprehensive study on antimicrobial susceptibility, virulence profiling and molecular epidemiology of uropathogenic Escherichia coli from Pakistan. Molecular Biology Reports, 52(1), 1–12. DOI: https://10.1007/s11033-025-10799-3.

8. Atif, M., D. S., Al-Rubaye, and H. R. Al-Hraishawi., 2023. Plasmid profiling of extended spectrum β-lactamases producing Escherichia coli in some hospitals in Baghdad. Iraqi Journal of Agricultural Sciences, 54(2), 360–368. DOI: https://doi.org/10.36103/ijas.v54i2.1710.

9. Baldiris-Avila, R., A., Montes-Robledo and B. Buelvas-Montes, 2020. Phylogenetic classification, biofilm-forming capacity, virulence factors, and antimicrobial resistance in uropathogenic Escherichia coli (UPEC). Current Microbiology, 77, 3361–3370. DOI: https://10.1007/s00284-020-02173-2.

10. Behzadi, P., E., Behzadi, H., Yazdanbod, R., Aghapour, M. A., Cheshmeh and D. S. Omran, 2010. Urinary tract infections associated with Candida albicans. Maedica (Bucur), 5, 277. PMCID: PMC3152833.

11. Biswas, S., R., Rana, M., Bal, S., Pati, M., Suar, and M. Ranjit., 2025. Escherichia coli associated urinary tract infection: epidemiology and possible strategies for control. One Health Bulletin, 5(2), 51–57. DOI: https://10.4103/ohbl.ohbl_56_24.

12. Bunduki, G. K., E., Heinz, V. S., Phiri, P., Noah, N., Feasey and J. Musaya, 2021. Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: a systematic review and meta-analysis. BMC Infectious Diseases 21, 1–13. DOI: https://10.1186/s12879-021-06435-7.

13. Chong, C. S. C., Y. Y., Lau, P. A. M., Michels, and C. S. Y. Lim., 2025. Insights into biofilm-mediated mechanisms driving last-resort antibiotic resistance in clinical ESKAPE pathogens. Critical Reviews in Microbiology, 1–26. DOI: https://doi.org/10.1080/1040841X.2025.2473332.

14. Christensen, G. D., W. A., Simpson, A. L., Bisno, and E. H. Beachey. 1982. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318–326. DOI: https://10.1128/iai.37.1.318-326.1982.

15. Deo, R., U., Lakra, M., Ojha, V. K., Nigam, and S. R. Sharma., 2025. Exopolysaccharides in microbial interactions: signalling, quorum sensing, and community dynamics. Natural Product Research, 39(11), 3224–3239. DOI: https://doi.org/10.1080/14786419.2024.2405867.

16. Derakhshandeh, A., R., Firouzi, M., Motamedifar, S., Arabshahi, A., Novinrooz, A.M., Boroojeni, M., Bahadori and S. Heidari, 2015. Virulence characteristics and antimicrobial resistance patterns among various phylogenetic groups of uropathogenic Escherichia coli isolates. Japanese Journal of Infectious Diseases, 68, 428–431. DOI: https://doi.org/10.7883/yoken.JJID.2014.327.

17. Foroogh, N., M., Rezvan, K., Ahmad and S. Mahmood, 2021. Structural and functional characterization of the FimH adhesin of uropathogenic Escherichia coli and its novel applications. Microbial Pathogenesis, 161, 105-110. DOI: https://doi.org/10.1016/j.micpath.2021.105288

18. Guerra, S. T., H., Orsi, S. F., Joaquim, F. F., Guimarães, B. C., Lopes, F. M., Dalanezi, D. S., Leite, H., Langoni, J. C. F., Pantoja and V. L. M. Rall, 2020. Investigation of extra-intestinal pathogenic Escherichia coli virulence genes, bacterial motility, and multidrug resistance pattern of strains isolated from dairy cows with different severity scores of clinical mastitis. Journal of Dairy Science, 10(3), 3606–3614. DOI: https://doi.org/10.3168/jds.2019-17477.

19. Jamal, M., W., Ahmad, S., Andleeb, F., Jalil, M., Imran, M. A., Nawaz, T., Hussain, M., Ali, M. Rafiq, and M. A. Kamil, 2018. Bacterial biofilm and associated infections. Journal of The Chinese Medical Association, 8(1): 7–11. DOI: https://10.1016/j.jcma.2017.07.012.

20. Lewis, J. S., 2024. Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, 199-202. URL: https://short-link.me/1azCH

21. Liu, S., X., Xu, J., Xu, J., Yuan, W., Wu, N., Zhang, and Z. Chen, 2017. Multi-drug resistant uropathogenic Escherichia coli and its treatment by Chinese medicine. Chinese Journal of Integrative Medicine, 2(3): 763–769. DOI: https://10.1007/s11655-016-2738-0.

22. Manna, A., D., Ramasamy, K., Vanathy, S., Srirangaraj, R., Ramya, and D. Lakshmanan., 2025. Mucoid phenotype in clinical isolates of Escherichia coli: an underexplored phenomenon. Journal of Applied Microbiology, 136(7), lxaf166. DOI: https://doi.org/10.1093/jambio/lxaf166.

23. Moeinizadeh, H. and M. Shaheli, 2021. Frequency of hlyA, hlyB, hlyC and hlyD genes in uropathogenic Escherichia coli isolated from UTI patients in Shiraz. GMS Hygiene and Infection Control, 1(6): 103-109. DOI: https://10.3205/dgkh000396.

24. Mohammed, A. E. D. H., M. F., Mohamed, A. M., Goda and S. R. Mohamed, 2018. Antimicrobial resistance pattern of Staphylococcus aureus isolated from infected wounds at Sohag University Hospitals. Sohag Medical Journal, 2(2): 179–187. DOI: https://10.21608/smj.2018.32146.

25. Monroy-Pérez, E., A. B., Cerón, L. R., García Cortés, N. N., Alonso, P., Domínguez-Trejo, T., Hernández-Jaimes, J., Bustos-Martínez, A., Hamdan-Partida, E. A., and S. Rojas Jiménez, Vaca, 2020. Virulence gene transcription, phylogroups, and antimicrobial resistance of cervico-vaginal pathogenic E. coli in Mexico. PLoS One, 1(5): 730-740. DOI: https://doi.org/10.1371/journal.pone.0234730.

26. Nadell, C. D. and B. L. Bassler, 2011. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proceedings of the National Academy of Sciences, 10(8): 14181–14185. DOI: https://doi.org/10.1073/pnas.111114710.

27. Niederdorfer, R., K., Besemer, T.J., Battin and H. Peter, 2017. Ecological strategies and metabolic trade-offs of complex environmental biofilms. NPJ Biofilms Microbiomes 6(3):212-217. DOI: https://10.1038/s41522-017-0029-y.

28. Nunes, P.H.S., T.B., A.C. de M., Valiatti, J. A. da S., Santos, Nascimento, J. F., Santos-Neto, T.T., Rocchetti, M.C.Z., Yu, A.L., Hofling-Lima and T. A. T. Gomes, 2022. Evaluation of the pathogenic potential of Escherichia coli strains isolated from eye infections. Microorganisms, 2(10): 1084-1088. DOI: https://doi.org/10.3390/microorganisms10061084.

29. Paniagua-Contreras, G. L., E., Monroy-Pérez, R. R., Solis, A. B., Cerón, L. R. G., Cortés, N. N., Alonso, D. H., Camarillo, L. S., Arreygue, P., Domínguez-Trejo and C. D. Velásquez, 2019. O-serogroups of multi-drug resistant cervicovaginal Escherichia coli harboring a battery of virulence genes. Journal of Infection and Chemotherapy, 2(5): 494–497. DOI: https://10.1016/j.jiac.2019.02.004.

30. Parvizi, J., I. M., Pawasarat, K. A., Azzam, A., Joshi, E. N. Hansen, and K. J. Bozic, 2010. Periprosthetic joint infection: the economic impact of methicillin-resistant infections. J Arthroplasty 2(5): 103–107. DOI: https://10.1016/j.arth.2010.04.011.

31. Promite, S. and S. K. Saha, 2020. Escherichia coli in respiratory tract infections: evaluating antimicrobial resistance and prevalence of fimA, neuC and iutA virulence genes. Gene Rep 1(8): 100-106. DOI: https://10.1016/j.genrep.2019.100576.

32. Rozwadowski, M. and D. Gawel, 2022. Molecular factors and mechanisms driving multidrug resistance in uropathogenic Escherichia coli—An update. Genes (Basel), 1(3): 1397-1401. DOI: https://10.3390/genes13081397.

33. Seifi, K., H., Kazemian, H., Heidari, F., Rezagholizadeh, Y., Saee, F., Shirvani and H. Houri, 2016. Evaluation of biofilm formation among Klebsiella pneumoniae isolates and molecular characterization by ERIC-PCR. Jundishapur Journal of Microbiology 6(9):122-127. DOI: https://10.5812/jjm.30682.

34. Silmon de Monerri, N. C., Y., Che, J. A., Lees, J., Jasti, H., Wu, M. C., Griffor, S., Kodali, J. C., Hawkins, J., Lypowy, and C. Ponce. 2025. Structure-based design of an immunogenic, conformationally stabilized FimH antigen for a urinary tract infection vaccine. PLoS Pathogens, 21(2), e1012325. DOI: https://doi.org/10.1371/journal.ppat.1012325.

35. Tahmasebi, H., N., Arjmand, M., Monemi, A., Babaeizad, F., Alibabaei, N., Alibabaei, A., Bahar, V., Oksenych, and M. Eslami. 2025. From cure to crisis: understanding the evolution of antibiotic-resistant bacteria in human microbiota. Biomolecules, 15(1), 93. DOI: https://10.3390/biom15010093.

36. Van Eyssen, S. R., A., Samarkina, O., Isbilen, M. S., Zeden and E. Volkan, 2023. FimH and Type 1 Pili Mediated Tumor Cell Cytotoxicity by Uropathogenic Escherichia coli In Vitro. Pathogens, 3(12): 751-756. DOI: https://10.3390/pathogens12060751.

37. Verderosa, A. D., M., Totsika and K. E. Fairfull-Smith, 2019. Bacterial biofilm eradication agents: a current review. Frontiers in Chemistry, 7(7): 824-829. DOI: https://10.3389/fchem.2019.00824.

38. Wang, S., Wang, L., Liu, C., Qiu, S., Xiao, Q., Ouyang, and M. Ji. 2025. Research progress on the influence factors of the quorum sensing system regulating the growth of wastewater treatment biofilm. Water, 17(13), 1944. DOI: https://doi.org/10.3390/w17131944

39. Wang, Z., X., Niu, N., Zhong, L., Kong, S., Nawaz, H., Zhang, W., Jiang, Y., Liu, J., Tu, and X. Han. 2025. FimC binds to the promoter region of agn43 to modulate autoaggregation. Frontiers in Cellular and Infection Microbiology, 15, 1591206. DOI: https://10.3389/fcimb.2025.1591206.

40. Zadeh, F.M., H., Zarei and S.H. Jahromy, 2021. Type1 and 3 fimbriae phenotype and genotype as suitable markers for uropathogenic bacterial pathogenesis via attachment, cell surface hydrophobicity, and biofilm formation in catheter-associated urinary tract infections (CAUTIs). The Iranian Journal of Basic Medical Sciences, 2(4): 1098-1102. DOI: https://10.22038/IJBMS.2021.53691.12079

Downloads

Published

2025-10-27

Issue

Section

Articles

How to Cite

Reyam H. A., & Aida H. I. (2025). DETECTION OF SOME BIOFILM FORMATION GENES AND THEIR ROLE IN ANTIMICROBIAL RESISTANCE OF UROPATHOGENIC Escherichia coli. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(5), 1698-1707. https://doi.org/10.36103/wwdz9b74