INHIBIOTORY EFFECT OF TRYPTOPHAN ON BIOFELIM DEVELOPMENT AND VIABILITY IN METHICILLIN RESISTANT Staphylococcus aureus

Authors

  • Falah Abdul-Razaq Jaafar
  • Nuha J. Kandala

DOI:

https://doi.org/10.36103/x7hnfx15

Keywords:

agr gene, ica gene, QS gene, antibiotic resistance, crystal violet

Abstract

This study was aimed to evaluate the antimicrobial and antibiofilm activity of tryptophan against methicillin-resistant S. aureus (MRSA). A 326 samples were obtained from patients attending Al-Karama hospital\Baghdad city with various infections including: blood, vagina, acne, nasal cavity, wounds, gums and skin. Only 100 isolates were identified as S. aureus, according to conventional and molecular methods. Detection of mecA and icaAD gene was performed using polymerase chain reaction (PCR) and the results showed 70% of isolates harbored mecA gene (MRSA) and 61% of isolates harbored icaAD gene. The results of detecting quorum sensing (QS) genes, include agr1, agr2, agr3 and agr4, using PCR were revealed, that 27. 14%, 18. 6% and 41. 43 of MRSA isolates were carrying agr1, agr2 and agr3 genes, respectively. The antimicrobial and antibiofilm activity of different concentrations of tryptophan were estimated using colony-forming unit (CFU) assays. The findings revealed that the FSA96 isolate was showed greater ability to resist 2mg/ml of tryptophan in percentage 25. 6% than other isolates (FSW61, FSW69 and FSB76 in percentage (16, 16. 25 and 16. 7) % respectively. The biofilms were showed significantly decrease in their percentages (2.17, 1.64, 3.63 and 1. 49) % at concentration 2 mg/ml of tryptophan for FSW61, FSW69, FSB76 and FSA96 isolates. The present study examined the role of QS (agr1 and agr2) genes in the production of biofilm icaAD gene for three selected MRSA isolates using qPCR. The results indicate the significant influence for the expression of icaAD gene which is associated with the expression of a QS genes (agr1 and agr2) which significantly downregulated after being treated with 2. 0 mg/ml of tryptophan compared with the control that expressed. The results indicate the significant differences for the expression of icaAD gene which is associated with the expression of a QS genes (agr1 and agr2) when showed down regulation after being treated with 2.0 mg/ml of tryptophan compared with the control that expressed.

References

1. Arciola, C. R., L., Baldassarri, and L. Montanaro, 2001. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. Journal of Clinical Microbiology, 39(6), 2151–2156.

DOI: https://doi.org/10.1128/jcm.39.6.2151-2156.2001

2. Bibalan, M. H., F. Shakeri., N. Javid., A. Ghaem., and E. A. Ghaemi, 2014. Accessory gene regulator types of Staphylococcus aureus isolated in Gorgan, North of Iran. Journal of Clinical and Diagnostic Research: JCDR, 8(4), DC07.DOI: https://10.7860/JCDR/2014/6971.4219

3. Brakstad, O. G., K. Aasbakk., and J. A. Maeland, 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. Journal of Clinical Microbiology, 30(7), 1654–1660. DIO: https://doi.org/10.1128/jcm.30.7.1654-1660.1992

4. Burt, S. A., V. T. A., Ojo-Fakunle, Woertman, J., and E. J. A. Veldhuizen, 2014. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One, 9(4), e93414.

DIO: https://doi.org/10.1371/journal.pone.0093414

5. Chakraborty, P., A. V., Daware, Kumari, M., Chatterjee, A., Bhattacharyya, D., Mitra, G., Akhter, Y., Bhattacharjee, S., and P. Tribedi, 2018. Free tryptophan residues inhibit quorum sensing of Pseudomonas aeruginosa: a potential approach to inhibit the development of microbial biofilm. Archives of Microbiology, 200(10), 1419–1425. DIO: https://doi.org/10.1007/s00203-018-1557-4

6. Chakraborty, P., D. G., Dastidar, P. Paul., Dutta, S., Basu, D., Sharma, S. R., Basu, S., Sarker, R. K., Sen, A., and A. Sarkar, 2020. Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm. Archives of Microbiology, 202(3), 623–635. DIO: https://doi.org/10.1007/s00203-019-01775-0

7. Cheung, A. L., K. J. Eberhardt, E. Chung, M. R. Yeaman, P. M. Sullam, M. Ramos and A. S. Bayer, 1994. Diminished virulence of a sar-/agr-mutant of Staphylococcus aureus in the rabbit model of endocarditis. The Journal of Clinical Investigation, 94(5), 1815–1822. DIO: https://doi.org/10.1172/JCI36066

8. Costerton, J. W., P. S., Stewart, and E. P. Greenberg, 1999. Bacterial biofilms: a common cause of persistent infections. Science, 284(5418), 1318–1322. DIO:

DOI: 10.1126/science.284.5418.1318

9. Cramton, S. E., C., Gerke, N. F., Schnell, W. W., Nichols, and F. Götz, 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infection and Immunity, 67(10), 5427–5433.

DOI: https://doi.org/10.1128/iai.67.10.5427-5433.1999

10. Eliezer, D., S. S., Townsend, P. J., Sawyer, B., Major, and W. B. Mendes, 2011. System-justifying beliefs moderate the relationship between perceived discrimination and resting blood pressure. Social Cognition, 29(3), 303-321. DOI: https://doi.org/10.1521/soco.2011.29.3.303

11. Gad, G. F. M., M. A., El-Feky, M. S., El-Rehewy, Hassan, M. A., Abolella, H., and R. M. Abd El-Baky, 2009. Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. The Journal of Infection in Developing Countries, 3(05), 342–351. DOI: https://doi.org/10.3855/jidc.241

12. Ghosh, S., A., Qureshi, and H. J. Purohit, 2019. D-Tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus. Journal of Biosciences, 44, 1-10. DOI: https://doi.org/10.1007/s12038-018-9841-7

13. Giacometti, A., O., Cirioni, A. M., Schimizzi, M. S., del Prete, F., Barchiesi, F., D’errico, M. M., Petrelli, E., and G. Scalise, 2000. Epidemiology and microbiology of surgical wound infections. Journal of Clinical Microbiology, 38(2), 918–922. DOI: https://doi.org/10.1128/jcm.38.2.918-922.2000

14. Götz, F, 2002. Staphylococcus and biofilms. Molecular Microbiology, 43(6), 1367–1378. DOI: https://doi.org/10.1046/j.1365-2958.2002.02827.x

15. Gupta, V. K., N., Tiwari, P., Gupta, S., Verma, A., Pal, S. K., Srivastava, and M. P., Darokar,2016. A clerodane diterpene from Polyalthialongifolia as a modifying agent of the resistance of methicillin resistant Staphylococcusaureus. Phytomedicine, 23(6), 654-661. DOI: https://doi.org/10.1016/j.phymed.2016.03.001

16. Gurusamy, K. S., R., Koti, C. D., Toon, P., Wilson, and B. R., Davidson, 2013. Antibiotic therapy for the treatment of methicillin‐resistant Staphylococcus aureus (MRSA) infections in surgical wounds. Cochrane Database of Systematic Reviews, 5(8): 3028-3033. DOI: https://doi.org/10.1002/14651858.CD009726.pub2

17. Hassan, A., J., Usman, F., Kaleem, M., Omair, A., Khalid, and M. Iqbal, 2011. Evaluation of different detection methods of biofilm formation in the clinical isolates. Brazilian Journal of Infectious Diseases, 15(4), 305-311. DOI: https://doi.org/10.1590/S1413-86702011000400002

18. Huber, B., K., Riedel, M., Hentzer, Heydorn, A., Gotschlich, A., Givskov, M., S., Molin, and L., Eberl, 2001. The cep quorum-sensing system of Burkholderiacepacia H111 controls biofilm formation and swarming motility. Microbiology, 147(9), 2517–2528. DOI: https://doi.org/10.1099/00221287-147-9-2517

19. Jabur, E. Q., and N. Kandala, 2022. The production of biofilm from methicillin resistant Staphylococcus aureusisolated from post-surgical operation inflammation. Iraqi Journal of Science, 3688–3702. DOI: https://doi.org/10.24996/ijs.2022.63.9.3

20. Jafaar, F. A. and N. J. Kandala, 2025. Molecular detection of adhesive matrix molecules for staphylococcus aureus isolated from different samples. Iraqi Journal of Agricultural Sciences 56, 784–798.

DOI: https://doi.org/10.36103/ngr0nm29

21. Koosha, R. Z., H. M., Hosseini, E. M.,Aghdam, S. G., Tajandareh, and A. A. I. Fooladi, 2016. Distribution of tsst-1 and mecA genes in Staphylococcus aureus isolated from clinical specimens. Jundishapur Journal of Microbiology, 9(3): 4688-4697.

DOI: https://doi.org/10.5812/jjm.29057

22. Lebeaux, D. A., Chauhan, O., Rendueles, and C. Beloin, 2013. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens, 2(2), 288-356. DOI: https://doi.org/10.3390/pathogens2020288

23. Li, T., H., Lu, X., Wang, Q., Gao, Y., Dai, J., Shang, and M., Li, 2017. Molecular characteristics of Staphylococcusaureus causing bovine mastitis between 2014 and 2015. Frontiers in Cellular and Infection Microbiology, 7, 127. DOI: https://doi.org/10.3389/fcimb.2017.00127

24. Livak, K. J., and T. D. Schmittgen, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408. DOI: https://doi.org/10.1006/meth.2001.1262

25. Lynch, M. J., S. Swift, D. F., Kirke, C. W., Keevil, C. E. R.,Dodd and P. Williams, 2002. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environmental Microbiology, 4(1), 18–28. DOI: https://doi.org/10.1046/j.1462-2920.2002.00264.x

26. Mistry, H., P., Sharma, S., Mahato, R., P. A., Saravanan, Kumar, and V. Bhandari, 2016. Prevalence and characterization of oxacillin susceptible mecA-positive clinical isolates of Staphylococcus aureus causing bovine mastitis in India. PLoS One, 11(9), e0162256. DOI: https://doi.org/10.1371/journal.pone.0162256

27. Moffett, J. R., and M. A. A. Namboodiri, 2003. Tryptophan and the immune response. Immunology and Cell Biology, 81(4), 247–265. DOI: https://doi.org/10.1046/j.1440-1711.2003.t01-1-01177.x

28. Mohammed, A. E. D. H., M. F.,Mohamed, A. M., Goda, and S. R. Mohamed, 2018. Antimicrobial resistance pattern of Staphylococcus aureus isolated from infected wounds at Sohag University Hospitals. Sohag Medical Journal, 22(3), 179–187. DOI: https://doi.org/10.21608/ejmm.2018.285331

29. Møretrø, T., L., Hermansen, A. L., Holck, M. S., Sidhu, K., Rudi, and S. Langsrud, 2003. Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food processing environments. Applied and Environmental Microbiology, 69(9), 5648–5655. DIO: https://doi.org/10.1128/AEM.69.9.5648-5655.2003

30. Nasr, R. A., H. M., AbuShady, and H. S.,Hussein, 2012. Biofilm formation and presence of icaAD gene in clinical isolates of staphylococci. Egyptian Journal of Medical Human Genetics, 13(3), 269–274. DIO: https://doi.org/10.1016/j.ejmhg.2012.04.007

31. Novick, R. P., 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Molecular Microbiology, 48(6), 1429–1449. DIO: https://doi.org/10.1046/j.1365-2958.2003.03526.x

32. Novick, R. P., 1999. Pathogenicity factors and their regulation. Gram-Positive Pathogens, 392–407. URL: https://cir.nii.ac.jp/crid/1571417124824344064

33. Osinupebi, O. A., J. A., Osiyemi, A. M., Deji-Agboola, P. A., Akinduti, O., Ejilude, S. O., Makanjuola, N. O., Sunmola, and E. O. Osiyemi, 2018. Prevalence of methicillin-resistant Staphylococcus aureus in Abeokuta, Nigeria. South Asian Journal of Research in Microbiology, 1(1), 1–8. DOI: https://doi.org/10.9734/sajrm/2018/v1i1718

34. Paharik, A. E., and A. R., Horswill, 2016. The staphylococcal biofilm: adhesins, regulation, and host response. Virulence Mechanisms of Bacterial Pathogens, 529-566. DIO: https://doi.org/10.1128/9781555819286.ch19

35. Parvizi, J.,I. M., Pawasarat, K. A., Azzam, Joshi, A., Hansen, E. N., and K. J., Bozic, 2010. Periprosthetic joint infection: the economic impact of methicillin-resistant infections. The Journal of Arthroplasty, 25(6), 103–107. DOI : https://doi.org/10.1016/j.arth.2010.04.011

36. Paul, D. v, M. G., George, Dorothy, J., Noel, R. K., Wolfgang, L., Fred, A. R., Karl-Heinz, S., and B. W. William, 2009. Bergey’s manual of systematic bacteriology. Williams, Georgia, USA, 470–471. DOI: https://doi.org/10.1007/978-0-387-68489-5

37. Paul, D. v, George, M.G., Dorothy, J., Noel, R.K., Wolfgang, L., Fred, A.R., Karl-Heinz, S., William, B.W., 2009. Bergey’s manual of systematic bacteriology. Williams, Georgia, USA 470–471. DIO: https://10.1007/978-0-387-68489-5

38. Proctor, A. R., and W. E. Kloos, 1973. Tryptophan biosynthetic enzymes of Staphylococcus aureus. Journal of Bacteriology, 114(1), 169–177. DIO: https://doi.org/10.1128/jb.114.1.169-177.1973

39. Pynnonen, M., R.E., Stephenson, K., Schwartz, M., Hernandez, B.R., Boles, 2011. Hemoglobin promotes Staphylococcus aureus nasal colonization. PLoS Pathog 7, e1002104. DOI: https://10.1371/journal.ppat.1002104.

40. Saba, T., M., A. A., Sajid, Khan, and R. Zahra, 2018. Role of intracellular adhesion icaAD and agr genes in biofilm formation in clinical S. aureus isolates and assessment of two phenotypic methods. Pakistan Journal of Medical Sciences, 34(3), 633. DIO: https://doi.org/10.12669/pjms.343.14530

41. Sarkar, S., and M. M. Pires, 2015. d-Amino acids do not inhibit biofilm formation in Staphylococcus aureus. PLoS One, 10(2), e0117613. DOI: https://doi.org/10.1371/journal.pone.0117613

42. Song, X., E., Perencevich, J., Campos, B.L., Short, N., Singh, 2010. Clinical and economic impact of methicillin-resistant Staphylococcus aureus colonization or infection on neonates in intensive care units. Infect Control Hosp Epidemiol 31, 177–182. DOI: https://10.1086/649797.

43. Toledo-Arana, A., Merino, N., Vergara-Irigaray, M., Débarbouillé, M., Penadés, J. R., and I. Lasa, 2005. Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. Journal of Bacteriology, 187(15), 5318–5329. DOI: https://doi.org/10.1128/jb.187.15.5318-5329.2005

44. Von Eiff, C., K., Becker, K., Machka, H., Stammer, G., Peters, 2001. Nasal carriage as a source of Staphylococcus aureus bacteremia. New England Journal of Medicine 344, 11–16. DOI: https://10.1056/NEJM200101043440102.

45. Wesson, C. A., Liou, L. E., Todd, K. M., Bohach, G. A., Trumble, W. R., and, K. W. Bayles 1998. Staphylococcus aureusAgr and Sar global regulators influence internalization and induction of apoptosis. Infection and Immunity, 66(11), 5238–5243. DOI: https://doi.org/10.1128/iai.66.11.5238-5243.1998

46. Yarwood, J. M., Bartels, D. J., Volper, E. M., and E. P. Greenberg, 2004. Quorum sensing in Staphylococcus aureus biofilms. Journal of Bacteriology, 186(6), 1838–1850. DOI: https://doi.org/10.1128/jb.186.6.1838-1850.2004

47. Yarwood, J. M., and P. M. Schlievert, 2003. Quorum sensing in Staphylococcus infections. The Journal of Clinical Investigation, 112(11), 1620–1625. DOI: https://doi.org/10.1172/JCI36066

48. Zhang, K., J.-A., McClure, and J. M. Conly, 2012. Enhanced multiplex PCR assay for typing of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. Molecular and Cellular Probes, 26(5), 218–221. DIO: https://doi.org/10.1016/j.mcp.2012.04.002

49. Zhang, K., J. -A., McClure, Elsayed, S., Louie, T., and J. M. Conly, 2005. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. Journal of Clinical Microbiology, 43(10), 5026–5033. DOI: https://doi.org/10.1128/jcm.43.10.5026-5033.2005

Downloads

Published

2025-10-27

Issue

Section

Articles

How to Cite

Jaafar, F. A.-R. J., & Kandala, N. J. (2025). INHIBIOTORY EFFECT OF TRYPTOPHAN ON BIOFELIM DEVELOPMENT AND VIABILITY IN METHICILLIN RESISTANT Staphylococcus aureus. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(5), 1671-1685. https://doi.org/10.36103/x7hnfx15