EFFECT OF MYCOPLASMA GALLISEPTICUM INFECTION ON ND VACCINE IN BROILER CHICKENS UNDER VARIOUS TREATMENTS

Authors

  • A. K. Abd
  • A. J. Ali

DOI:

https://doi.org/10.36103/9hyjge76

Keywords:

Poultry, vaccine, molicutes, bursa of fabrecious, herbal

Abstract

This study aimed to investigate the effect of Mycoplasma gallisepticum infection on Immune  organs and Immune response of ND vaccine in broiler chickens .210 day- old Broiler chicks were  randomly assigned to seven equal groups as following  G1: control  was not received any treatment, G2: only M. gallisepticum infection, G3: only ND vaccine, G4 ND vaccine and M. gallisepticum infection  , G5: ND vaccine and M. gallisepticum infection and treated with probiotic G6: ND vaccine and M. gallisepticum infection  and  treated with Glycyrrhizic Acid by drinking water, G7 : ND vaccine and M. gallisepticum infection  and treated with tylosin by drinking water. Blood samples were collected at 1st, 5th, 10th, 16th, 25th, 27th and 35th day for immunological tests and histopathological examination of spleen and bursa of fabricious at the result revealed the highest level of the ND antibody titers in G5, G6, G7,G1 and G3 respectively. Histopathological analysis of the spleen organ revealed necrosis in G4, white pulp hyperplasia in G6 and G7 while the lesions of bursa indicate that severe hyperplasia in M. gallisepticum infection group. The study concluded that probiotic and glycyrrhizic acid reduce effect of M. gallisepticum infection on immune response and immune organs.     

References

1. Alagawany, M., S. S. Elnesr, M. R. Farag, M. E. Abd El-Hack, A. F. Khafaga, A. E. Taha, and K. Dhama., 2019. Use of licorice (Glycyrrhiza glabra) herb as a feed additive in poultry: Current knowledge and prospects. Animals, 9(8): 536. https://doi.org/10.3390/ani9080536

2. Ali, E. J. and B. H. Ali. 2019. Isolation, identification and sequencing of Mycoplasma gallisepticum by culture and PCR in Baghdad city, Iraq. Indian Journal of Public Health, 10(8): 937–941. https://doi.org/10.5958/0976-5506.2019.02014.x

3. Al-Tamimi, S. M., A. J. Ali, and R. A. Faraj. 2023. The impact of two types of Mycoplasma gallisepticum vaccines on broiler chicken respiratory system. University of Thi-Qar Journal of Agricultural Research, 12(2): 131–142. https://doi.org/10.54174/utjagr.v12i2.274

4. Armour, N. K. and N. Ferguson-Noel. 2015. Evaluation of the egg transmission and pathogenicity of Mycoplasma gallisepticum isolates genotyped as ts-11. Avian Pathology, 44(4): 296-304. ‏

https://doi.org/10.1080/03079457.2015.1044890

5. Asgharzade, S., S. Zaeri, M. Hasanzade, M. Ahmadi, and A. R. Talebi. 2013. Detection of Mycoplasma gallisepticum in experimentally infected broiler chickens using culture, SPA, ELISA, and PCR methods. Comparative Clinical Pathology, 22: 1051–1055. https://doi.org/10.1007/s00580-012-1524-4

6. Awad, N. F., M. I. Abd El‐Hamid, Y. M Hashem, A. M. Erfan, B. A. Abdelrahman and H. I. Mahmoud. 2019. Impact of single and mixed infections with Escherichia coli and Mycoplasma gallisepticum on Newcastle disease virus vaccine performance in broiler chickens: an in vivo perspective. Journal of applied microbiology, 127(2), 396-405. https://doi.org/10.1111/jam.14303

7. Benčina, D., I. Mrzel, O. Zorman Rojs, A. Bidovec, and A. Dovč. 2003. Characterisation of Mycoplasma gallisepticum strains involved in respiratory disease in pheasants and peafowl. Veterinary Record, 152(8): 230–234. https://doi.org/10.1136/vr.152.8.230

8. Boguslavsky, S., D. Menaker, I. Lysnyansky, T. Liu, S. Levisohn and R. Rosengarten. 2000. Molecular characterization of the Mycoplasma gallisepticum pvpA gene which encodes a putative variable cytadhesin protein. Infection and Immunity, 68(7): 3956–3964. https://doi.org/10.1128/IAI.68.7.3956-3964.2000

9. Chen, X., M. Ishfaq, F. Hu, Q. Zheng, X. Hu and J. Wang. 2023. Bacillus subtilis KC1 prevents Mycoplasma gallisepticum-induced lung injury by enhancing intestinal Bifidobacterium animalis and regulating indole metabolism in chickens. Poultry Science, 102(8): 102824. https://doi.org/10.1016/j.psj.2023.102824

10. Collett, S. R., J. A. Smith, M. Boulianne, R. L. Owen, E. Gingerich, R. S. Singer, and B. Stewart-Brown. 2020. Principles of disease prevention, diagnosis, and control. Diseases of Poultry, pp. 1–78. Wiley-Blackwell. https://doi.org/10.1002/9781119371199.ch1

11. Farag, V. M., R. A. El-Shafei, R. M. Elkenany, H. S. Ali, and A. H. Eladl. 2022. Antimicrobial, immunological and biochemical effects of florfenicol and garlic (Allium sativum) on rabbits infected with Escherichia coli serotype O55:H7. Veterinary Research Communications, 46(2):363-376. https://doi.org/10.1007/s11259-021-09859-3

12. Faruque, M. R., and J. P. Christensen. 2007. Impacts of Mycoplasma gallisepticum vaccine on Newcastle disease vaccination and protection in parent stock flocks. Bangladesh Journal of Microbiology, 24(1): 62–64. https://doi.org/10.3329/bjm.v24i1.1240

13. Gimeno, I. M., and K. A. Schat. 2018. Virus-induced immunosuppression in chickens. Avian Diseases, 62(3): 272–285. https://doi.org/10.1637/11841-041318-Review.1

14. Ishfaq, M., W. Hu, M. Z. Khan, I. Ahmad, W. Guo, and J. Li. 2020. Current status of vaccine research, development, and challenges of vaccines for Mycoplasma gallisepticum. Poultry Science, 99(9): 4195–4202. https://doi.org/10.1016/j.psj.2020.06.014

15. Jafar, N. A., and B. S. Noomi. 2019. Detection of Mycoplasma gallisepticum and Mycoplasma synoviae by using cultural and PCR techniques. Iraqi Journal of Veterinary Sciences, 33(2): 469–473. https://doi.org/10.30539/0cv6sr30

16. Jenkins, C., S. J. Geary, M. Gladd, and S. P. Djordjevic. 2007. The Mycoplasma gallisepticum OsmC-like protein M. gallisepticum1142 resides on the cell surface and binds heparin. Microbiology, 153(5): 1455–1463. https://doi.org/10.1099/mic.0.2006/004937-0

17. Kapczynski, D. R., C. L. Afonso, and P. J. Miller. 2013. Immune responses of poultry to Newcastle disease virus. Developmental and Comparative Immunology, 41(3): 447–453. https://doi.org/10.1016/j.dci.2013.04.012

18. Lam, K. M. 2005. Chemotaxis in Mycoplasma gallisepticum. Avian Diseases, 49(1): 152–154. https://doi.org/10.1637/7232-070604r

19. Ley, D. H., and H. W. Yoder Jr. 2008. Mycoplasma gallisepticum Infection. In: Diseases of Poultry, 12th ed., pp: 807–834. https://doi.org/10.1002/9780470344606.ch17

20. Liu, Y., Y. Wang and S. J. Zheng. 2024. Immune evasion of Mycoplasma gallisepticum: An overview. International Journal of Molecular Sciences, 25(5): 2824. https://doi.org/10.3390/ijms25052824

21. Majumder, S. and L. K. Silbart. 2016. Interaction of Mycoplasma gallisepticum with chicken tracheal epithelial cells contributes to macrophage chemotaxis and activation. Infection and Immunity, 84(1): 266-274. https://doi.org/10.1128/iai.01113-15

22. Mayers, J., K. L. Mansfield, and I. H. Brown. 2017. The role of vaccination in risk mitigation and control of Newcastle disease in poultry. Vaccine, 35(44): 5974–5980. https://doi.org/10.1016/j.vaccine.2017.09.008

23. Munro, B. H. 1971. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology, 3 (3): 249.

https://doi.org/10.1016/s0031-3025(16)39410-7

24. Nazari, S., M. Rameshrad, and H. Hosseinzadeh. 2017. Toxicological effects of Glycyrrhiza glabra (licorice): a review. Phytotherapy Research, 31(11): 1635-1650. https://doi.org/10.1002/ptr.5893

25. Nijres, A. T, A. J. Ali and R. A. Faraj., 2024. Detection of Mycoplasma gallisepticum and Mycoplasma synoviae in Fertile Eggs by ELISA and Real-Time PCR. Iraqi Journal of Veterinary Medicine, 48(2):98-104.. https://doi.org/10.1637/0005-2086(2007)51[685:ROMSIC]2.0.CO;2

26. Nisa, Q. U., M. Younus, M. U. R. Khan, A. Maqbool, and S. Umar. 2019. Mycoplasma gallisepticum modifies virus shedding and immune response of Newcastle disease virus in broilers. Indian Journal of Animal Research, 53(7): 932–937. https://doi.org/10.18805/ijar.B-769

27. Noomi, B. S. and A. A. AL-Rasheed. 2024. Evaluation of Isolation and Polymerase Chain Reaction in Diagnosis of Mycoplasma Gallisepticum in Broiler Chickens in Kirkuk Governorate, Iraq. Egyptian Journal of Veterinary Sciences, 55(3): 775-783.‏ https://doi.org/10.21608/ejvs.2023.244586.1656

28. Oberländer, B., K. Failing, C. M. Jüngst, N. Neuhaus, M. Lierz, and F. Möller Palau-Ribes. 2020. Evaluation of Newcastle Disease antibody titers in backyard poultry in Germany with a vaccination interval of twelve weeks. Plos one, 15(8), e0238068.‏ https://doi.org/10.1371/journal.pone.0238068

29. Raviv, Z., S. A. Callison, N. Ferguson-Noel and S. H. Kleven. 2008. Strain differentiating real-time PCR for Mycoplasma gallisepticum live vaccine evaluation studies. Veterinary Microbiology, 129(1-2): 179-187. ‏https://doi.org/10.1016/j.vetmic.2007.11.017

30. Regmi, S., R. Bhatta, P. Pal, A. Shrestha, T. Mató, B. Puri, and S. Paudel. 2024. Clinicopathological and molecular investigation of Newcastle disease outbreaks in vaccinated and non-vaccinated broiler chicken flocks in Nepal. Animals, 14(16): 2423. https://doi.org/10.3390/ani14162423

31. Saif, Y. M., D. E. Swayne, M. J. Pantin-Jackwood, E. Spackman, T. J. Johnson and J. M. Day. 2020. Emerging diseases and diseases of complex or unknown etiology. In: Diseases of Poultry, 14th ed., pp: 1383–1410. https://doi.org/10.1002/9781119371199.ch33

32. Shehata, A. A., and H. M. Hafez. 2024. Mycoplasmosis. In Turkey Diseases and Disorders Volume 1: Bacterial and Fungal Infectious Diseases, pp: 47–63. https://doi.org/10.1007/978-3-031-63318-8_3

33. Staley, C., T. Kaiser, B. P. Vaughn, C. T. Graiziger, M. J. Hamilton, T. U. Rehman, K. Song, A. Khoruts, and M. J. Sadowsky. 2018. Predicting recurrence of Clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome, 6: 166. https://doi.org/10.1186/s40168-018-0549-6

34. Wang, J., M. Ishfaq, Y. Guo, C. Chen, and J. Li. 2020. Assessment of probiotic properties of Lactobacillus salivarius isolated from chickens as feed additives. Frontiers in Veterinary Science, 7: 415. https://doi.org/10.3389/fvets.2020.00415

35. Wang, J., M. Ishfaq, Y. Miao, Z. Liu, M. Hao, C. Wang, J. Wang, and X. Chen. 2022. Dietary administration of Bacillus subtilis KC1 improves growth performance, immune response, heat stress tolerance, and disease resistance of broiler chickens. Poultry Science, 101(3): 101693. https://doi.org/10.1016/j.psj.2021.101693

36. Wang, Y., L. Wang, R. Luo, Y. Sun, M. Zou, T. Wang, Q. Guo, and X. Peng. 2022. Glycyrrhizic acid against Mycoplasma gallisepticum-induced inflammation and apoptosis through suppressing the MAPK pathway in chickens. Journal of Agricultural and Food Chemistry, 70(6): 1996–2009. https://doi.org/10.1021/acs.jafc.1c07848

37. Yadav, J. P., K. Batra, Y. Singh, and M. Singh. 2021. Comparative evaluation of indirect-ELISA and DOT blot assay for sero detection of Mycoplasma gallisepticum and Mycoplasma synoviae antibodies in poultry. Journal of Microbiological Methods, 189: 106317. https://doi.org/10.1016/j.mimet.2021.106317

38. Yadav, J. P., P. Tomar, Y. Singh, and S. K. Khurana. 2022. Insights on Mycoplasma gallisepticum and Mycoplasma synoviae infection in poultry: a systematic review. Animal Biotechnology, 33(7): 1711–1720. https://doi.org/10.1080/10495398.2021.1908316

39. Zhang, P., L. Huang, E. Zhang, C. Yuan, and Q. Yang. 2021. Oral administration of Bacillus subtilis promotes homing of CD3+ T cells and IgA-secreting cells to the respiratory tract in piglets. Research in Veterinary Science, 136: 310–317. https://doi.org/10.1016/j.rvsc.2021.03.006

40. Zhou, Z., B. Shen, and D. Bi. 2020. Management of pathogens in poultry. Animal Agriculture, pp. 515–530. Academic Press. https://doi.org/10.1016/B978-0-12-817052-6.00030-6

Downloads

Published

2025-10-27

Issue

Section

Articles

How to Cite

Abd, A. K., & Ali, A. J. (2025). EFFECT OF MYCOPLASMA GALLISEPTICUM INFECTION ON ND VACCINE IN BROILER CHICKENS UNDER VARIOUS TREATMENTS. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(5), 1648-1657. https://doi.org/10.36103/9hyjge76