RELATIONSHIP OF THE LEPTIN GENE POLYMORPHISM ON THE PRODUCTION PERFORMANCE IN LOCAL AWASSI LAMBS
DOI:
https://doi.org/10.36103/k9csww84Keywords:
weight gain , digestibility , rumen fermentationsAbstract
This study was conducted at the Animal Farm of the College of Agricultural Engineering Sciences, University of Baghdad during the period from 22/1/2022 to 2/4/2022. This study was conducted to investigate the effect of leptin gene polymorphism on the weight gain, digestibility and rumen fermentations of Awassi lambs. Forty Awassi lambs were selected at age 4-5 months, with an initial weight mean of 25.4 kg, and distributed randomly in individual pens. The results showed that there were three variations in SNP (G>A), GG, GA and AA it was 66.67, 30.56 and 2.7%, respectively, and the differences between them were highly significant (P≤0.01). No significant differences of leptin gene polymorphism were noticed on the percentage of volatile fatty acids (acetic, propionic and butyric) as well as on the percentage of ammonia nitrogen at all times (0,3 and 6 hours). There were highly significant differences (P≤0.01) in pH of the rumen fluid in GG variations at the times of 0 and 6 hours compared with GA it was 6.78 ± 0.03 and 6.76 ± 0.02, respectively. The results also showed that there were no significant differences in the leptin gene polymorphism on digestibility and weight gain. It can be concluded that the study of genetic variations of leptin gene had no effect on the performance of Awassi lambs.
References
1. Abd Kadhim, J., A. Z. EK, and N. N. AL-Anbari, 2019. Relationship between leptin gene and some growth traits in local Awassi sheep. J. Kerbala Agric. Sci., 4(4), 180-188. http://doi.org/10.52113/mjas04/9.2/21
2. Abdali, N. A. A. and A. H. Salim., 2023, Study the leptin gene polymorphism and its relationship with a number of carcass traits in Iraqi sheep. IOP Conf. Ser.: Earth Environ. Sci., 1262, 072027. http://doi.org/10.1088/17551315/1262/7/072027
3. Ajafar, M. H., A. H. Kadhim and T. M. Al-Thuwaini., 2022. The reproductive traits of sheep and their influencing factors. Rev. Agric. Sci., 10: 82-89.
https://doi.org/10.7831/ras.10.0_82
4. Al-Burkat, H. A. H., H. M. J. Al-Khafaji and J. K. Al-Gharawi., 2023. Polymorphism of the leptin gene and its relationship to the body dimensions of the Awassi sheep. Revis Bionatura 2023; 8 (1), 73. https://doi.org/10.21931/RB/2023.08.01.73
5. Al-Hussaniy, H. A., A. H. Alburghaif and M. A. Naji., 2021. Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J. Med. Life, 14(5), 600. https://doi.org/10.25122/jml-2021-0153
6. Alim, M. A. M. M. K. Hossain, J. Nusrat, M. Salimullah, Z. Shu-Hong and J. Alam., 2019. Genetic effects of leptin receptor (LEPR) polymorphism on litter size in a Black Bengal goat population. Anim. Biol., 69(4), 411-420.
https://doi.org/10.1163/15707563-00001079
7. Almaamory, Y. A. and N. N. Al-Anbari., 2025. Relationship of the FASN gene polymorphism with milk production and its components in local Awassi sheep. Iraqi J. Agric. Sci., 56(3),.985-992. https://doi.org/10.36103/vtjmb057
8. AOAC, 2015. (Association of Official Analytical Chemists).Official methods of analysis. 18th ed. AOAC International, Gaithersburg, Maryland, USA.
9. Avondo, M., A. Di Trana, B. Valenti, A. Criscione, S. Bordonaro, A. De Angelis, D. Giorgio and P. Di Gregorio., 2019. Leptin gene polymorphism in goats fed with diet at different energy level: Effects on feed intake, milk traits, milk fatty acids composition, and metabolic state. Animals. 9 (7): 424. https://doi.org/10.3390/ani9070424
10. Banos, G., J. Woolliams, B. Woodward, A. Forbes and M. Coffey., 2008. Impact of single nucleotide polymorphisms in leptin, leptin receptor, growth hormone receptor, and diacylglycerol acyltransferase (DGAT1) gene loci on milk production, feed, and body energy traits of UK dairy cows. J. Dairy Sci. 91(8): 3190-3200. https://doi.org/10.3168/jds.2007-0930
11. Barbagallo, F., R. A. Condorelli, L. M. Mongioì, R. Cannarella, L.Cimino, M. C. Magagnini, A. Crafa, S. La Vignera and A. E. Calogero., 2021. Molecular mechanisms underlying the relationship between obesity and male infertility. Metabolites, 11(12), 840. https://doi.org/10.3390/metabo11120840
12. Bordoni, L. and R. Gabbianelli., 2019. Primers on nutrigenetics and nutri (epi) genomics: Origins and development of precision nutrition. Biochimie, 160, 156-171. https://doi.org/10.1016/j.biochi.2019.03.006
13. Caron, A., S. Lee, J. K. Elmquist and L. Autron .2018. Leptin and brain adipose crosstalks. Nat. Rev. Neurosci. 19(3): 153-165. https://doi.org/10.1038/nrn.2018.7
14. Darwish, A. M., M. A. Abdelhafez, Z. G. Abdel-Hamid, S. I. Othman, I.E. Mohamed and A. A. Allam., 2023. Correlation analysis between polymorphism of leptin and IGFI genes and body measurements in Barki and Farafra sheep. Beni-Suef University Journal of Basic and Applied Sciences, 12(1), 119.
15. Duncan, D. B., 1955. Multiple range and multiple F tests. Biometrics. 11(1): 1-42. https://doi.org/10.2307/3001478
16. Enas, R. A. and S. F. Mohamed., 2023. Effect of genetic variation of leptin gene on intake of roughage and concentrate diet of Awassi Lambs. IOP Conf. Ser.: Earth Environ Sci., 1262,. 072099. https://doi.org/10.1088/1755-1315/1262/7/072099
17. Ermawati, D., P. Panjono, S. Bintara, A. Agus, B. Widyobroto, B. Yudistyra, R. Mustofa and T. Hartatik., 2024. Association of leptin gene polymorphism with growth in crossbred cattle through PCR-RFLP analysis. Iraqi J. Vet. Sci., 38(4), 771-779. https://doi.org/10.33899/ijvs.2024.148741.3610
18. Falconer, D. S. and T. F. Mackay., 1996. Introduction to Quantitative Genetics (4th ed.).Longman, Harlow, UK.
19. Feuermann, Y., S. Mabjeesh and A. Shamay., 2004. Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 87(9): 2941-2946. https://doi.org/10.3168/jds.S0022-0302(04)73425-6
20. Frühbeck.G., S. Jebb and A. Prentice., 1998. Leptin: physiology and pathophysiology. Clin. Physiol. 18(5): 399-419. https://doi.org/10.1046/j.1365-2281.1998.00129.x
21. Gebreselassie, G., H. Berihulay, L. Jiang and Y. Ma., 2019. Review on genomic regions and candidate genes associated with economically important production and reproduction traits in sheep (Ovies aries). Animals 10(1), 33. https://doi.org/10.3390/ani10010033
22. Girmay, S., N. Ijaz, N. Hashmi, M. I. Ullah, G. Afzal, A. Nasir, S. Perween, A. Sami. N. Tara, S. Abbas and S.A. Muhammad., 2023. Functional genomics analysis of leptin-melanocortin system genes reveals candidate genes associated rapid growth and high carcass yield in sheep. J. King Saud University-Sci.,, 35(8), 102853. https://doi.org/10.1016/j.jksus.2023.102853
23. Herdis, H., I. Inounu, S. Santoso, R. I. Anwar, S. Y. Hayanti, M. F. Hudaya, D. .A. .Mahari, F.B.I. Lupitasari, A. Hafid, M.A. da Costa and N. Adianto., 2025. Reproductive integration of leptin and Kisspeptin in small ruminants: Mechanisms, biomarker potential, and prospects for precision breeding. Veterinary World, 18(6), 1614
https://doi.org/10.1186/s43088-023-00450-0
24. Kaur, R., S. Garcia, A. Horadagoda and W. Fulkerson., 2010. Evaluation of rumen probe for continuous monitoring of rumen pH, temperature and pressure. Anim. Prod. Sci. 50(2): 98-104. https://doi.org/10.1071/AN09048
25. Kibar, M. and İ. Aytekin., 2024. Associations between leptin gene polymorphism and some reproductive traits in Holstein-Friesian dairy cattle. J. Hellenic Vet. Med. Soc., 75(4),.8163-8172. https://doi.org/10.12681/jhvms.32289
26. Loor, J. J., M. Vailati-Riboni, J. C. McCann, Z. Zhou and M. Bionaz., 2015. Triennial Lactation Symposium: Nutrigenomics in livestock: Systems biology meets nutrition. J. Anim. Sci., 93(12), 5554-5574. https://doi.org/10.2527/jas.2015-9225
27. Maruszak, A., P. Sablik, E. Janus and A. Dybus., 2023. Relationship between the leptin gene polymorphism and the productivity and health traits in Holstein-Frisian cattle. Acta Scientiarum Polonorum. Zootechnica,22(4). https://doi.org/10.21005/asp.2023.22.4.06
28. Meira, A. N., G. C. M. Moreira, E. N. Coutinho, L. L., Mourão, G. B., Azevedo, H.C., Muniz, , A. L. Machado, L.P.S. Junior, V. B. Pedrosa, and L. F. B.Pinto, 2018. Carcass and commercial cut yield of Santa Inês sheep affected by polymorphisms of the LEP gene. Small Rumin. Res., 166, 121-128 https://doi.org/10.1016/j.smallrumres.2018.06.012
29. Naeemah, A. G. and N. N. Al-Anbari 2022. FASN gene polymorphism and its relationship with milk yield and composition in the Iraqi Awassi sheep. J. Kerbala Agric. Sci., (JKAS). 9(2): 34-45. https://doi.org/10.59658/jkas.v9i2.960
30. Nkrumah, J. D., C. Li, J. B. Basarab, S. Guercio, Y. Meng, B. Murdoch, C. Hansen, and S. S. Moore, 2004. Association of a single nucleotide polymorphism in the bovine leptin gene with feed intake, feed efficiency, growth, feeding behavior, carcass quality and body composition. Canadian J. Anim. Sci., 84(2), 211-219. https://doi.org/10.4141/A03-033
31. Nugroho, T., T. S. M. Widi and D. Maharani., 2022, February. The potency of leptin gene as a selection marker of economic traits for Madura cattle: preliminary study. In 9th Int. Semin. Trop. Anim. Prod., (ISTAP 2021), 231-237. https://doi.org/10.2991/absr.k.220207.048
32. Prihandini, P.W., A. P. Z. N. L. Sari, Tribudi, Y. A., Robba, D. K. and Wibowo, T.B., 2024, May. polymorphisms of the leptin gene in Jabres cattle. IOP Conf. Ser: Earth Environ. Sci., 1341, 012008. https://doi.org/10.1088/1755-1315/1341/1/012008
33. Raza, S.H.A., G.Y. Liu, L. Zhou, L. S. Gui, R. Khan, Y. Jinmeng, M. Chugang, N. M. Schreurs, R. Ji and L. Zan., 2020. Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene, 758, 144957. https://doi.org/10.1016/j.gene.2020.144957
34. Saleem, A. H., K. Javed, M. E. Babar, T. Hussain, A. Ali, A. Afzal, A. Nisar, M. Z. Farooq and M. Dawood., 2018. Association of leptin gene polymorphism with growth rate in Lohi sheep. Pak. J. Zool., 50(3):1029-1033. http://dx.doi.org/10.17582/journal.pjz/2018.50.3.1029.1033
35. SAS, 2018, Statistical Analysis System, User's Guide. Statistical. Version 9.4th ed. SAS. Inst. Inc. Cary. N.C. USA.
36. Sedykh, T. A., L. A. Kalashnikova, R. S. Gizatullin and V. I. Kosilov., 2020. Effects of leptin gene polymorphism on beef cattle performance. Russian Agric. Sci., 46(6),.614-618.https://doi.org/10.3103/S1068367420060166
37. Senturk, N., T. N. Selvi, M. Demir, H.Ustuner, H. Samli and S. Ardicli., 2024. The impact of LEP gene polymorphisms located at exon 2 (LEP-Hin fI) and intron 2 (LEP-Sau 3AI) on growth and reproductive traits in Saanen goats. Archives Animal Breeding, 67(4), 523-531.
https://doi.org/10.5194/aab-67-523-2024
38. Suárez-Mesa, R., R. Ros-Freixedes, R. N. Pena, J. Reixach and J. Estany., 2024. Impact of the leptin receptor gene on pig performance and quality traits. Sci. Rep., 14(1), 10652. https://doi.org/10.5194/aab-67-523-2024
39. Triantaphyllopoulos, K. A., I. Ikonomopoulos, and A. J. Bannister, 2016. Epigenetics and inheritance of phenotype variation in livestock. Epigenetics and chromatin, 9(1),.31. https://doi.org/10.1186/s13072-016-0081-5
40. Ueta, I., Y. Nakamura, S. Kawakubo and Y. Saito., 2018. Determination of aqueous formic and acetic acids by purge-and-trap analysis with a needle-type extraction device and gas chromatography barrier discharge ionization detector. Anal. Sci, 34(2), 201-205. https://doi.org/10.2116/analsci.34.201
41. Yang, D., H. Chen, X. Wang, Z. Tian, L. Tang, Z. Zhang, C. Lei, L. Zhang and Y. Wang., 2007. Association of polymorphisms of leptin gene with body weight and body sizes indexes in Chinese indigenous cattle. J. Genet Genomics. 34(5): 400-405. https://doi.org/10.1016/S1673-8527(07)60043-5
42. Yi, X., S. Yi, J. Wang, B. Ye, X .Zhu, Q. Meng, H. Wu, and Z. Zhou., 2025. Differential lipid metabolism in beef cattle: A comparative study of high and low residual feed intake bulls. Anim. Nut. 22, 214-229.


2.jpg)
https://orcid.org/0000-0002-5774-5906