PREPARATION OF POROUS SILICON STRUCTURE EMBEDDED WITH CdS FOR H2S Gas SENSING APPLICATIONS AND ITS INFLUENCE ON THE ENVIRONMENT
DOI:
https://doi.org/10.36103/vgyzae30Keywords:
Thin film; Chemical bath deposition; gas sensor, environmental monitoringAbstract
This study aimed to prepare and characterize a gas sensor based on porous silicon embedded with CdS using the laser-assisted chemical bath deposition method. The structural and optical properties of CdS thin film prepared at deposition time of 30 min were studied by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive X-ray (EDX), and UV-Vis spectrophotometer. The (XRD) results showed that the deposited CdS film was crystalline and the crystallinity of the film improved after using laser during deposition of the film. The value of optical energy gap of the CdS film deposited without and with laser irradiation were found to be 2.5 eV and 2.68 eV, respectively. The gas sensor based on CdS-embedded porous silicon exhibit good sensitivity to H2S gas. The sensor enables rapid detection of toxic H₂S gas, minimizing health and environmental risks and enhancing safety in industrial places.
References
1. Ahmed, F. M., A. M. Muhammed Ali, I R. A. smail, M. A. Fakhri, and E. T. Salim, 2023. Investigating the influence of deposition time on nanostructured CdS film prepared by chemical bath deposition for photodetection applications. Journal of Materials Science: Materials in Electronics, 34(27), 1906. https://doi.org/10.1007/s10854-023-11380-z
2. Al-Janabi , Z. Z., F. M. Hassan, and A. H. M. J. Al-Obaidy, 2024. Overall index of pollution (oip) for tigris river, baghdad city, Iraq, Iraqi Journal of Agricultural Sciences, 55. (2) 905-916.
https://doi.org/10.36103/gqq14f43
3. Alsaadoon, D. W. K., F. M. Hassan and W. M. Mahdi 2023. Assessement of water quality of diyala river using overall index of pollution (oip) in iraq. Iraqi Journal of Agricultural Sciences 54(3):682-690. https://doi.org/10.36103/ijas.v54i3.1748
4. Azaiez, K., R. B. Zaghouani, M. Daoudi, M. Amlouk, and W. Dimassi, 2021. Enhanced photoluminescence property of porous silicon treated with bismuth (III). Inorganic Chemistry Communications, 130, 108-679.
DOI:https://doi.org/10.1016/j.inoche.2021.108679
5. Azaiez, K., R. B. Zaghouani, S. Khamlich, H. Meddeb, and W. Dimassi, 2018. Enhancement of porous silicon photoluminescence property by lithium chloride treatment. Applied Surface Science, 441, 272-276. https://doi.org/10.1016/j.apsusc.2018.02.006
6. Chatterjee, S. G., S. Chatterjee, A. K. Ray, and A. K. Chakraborty, 2015. Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors and Actuators B: Chemical, 221, 1170-1181.
DOI: https://doi.org/10.1016/j.snb.2015.07.070
7. Du, N., Zhang, H., B. Chen, J. Wu, and D. Yang, 2007. Low-temperature chemical solution route for ZnO based sulfide coaxial nanocables: generalsynthesis and gas sensor application. Nanotechnology, 18(11), 115619. DOI 10.1088/0957-4484/18/11/115619
8. Dolai, S., R. Dey, S. Hussain, R. Bhar, and A. K. Pal, 2019. Photovoltaic properties of F: SnO2/CdS/CuO/Ag heterojunction solar cell. Materials Research Bulletin, 109: 1-9. DOI: https://doi.org/10.1016/j.materresbull.2018.09.022
9. Eman M. Noori and J. Nanostruct Winter, 2024, Properties of CdS Thin Films Prepared by Thermal Evaporation,14(1): 12-19,
DOI: 10.22052/JNS.2024.01.002
10. Fine, G. F., L. M. Cavanagh, A. Afonja, and R. Binions, 2010. Metal oxide semi-conductor gas sensors in environmental monitoring. sensors, 10(6), DOI: 5469-5502. https://doi.org/10.3390/s100605469
11. Gao, N., and F. Guo, 2006. A hydrothermal approach to flake-shaped CdS single crystals. Materials Letters, 60(29-30), 3697-3700. https://doi.org/10.1016/j.matlet.2006.03.091
12. Gosavi, S. R., C.P. Nikam, A.R. Shelke, A.M. Patil, S.-W. Ryu, J.S. Bhat, and N.G. Deshpande, 2015. Chemical synthesis of porous web- structured CdS thin flms for photosensor applications. Mater. Chem. Phys. 160 , 244–250.DOI:
https://doi.org/10.1016/j.matchemphys.2015.04.031
13. Hadi, H. A. 2014. Fabrication, morphological and optoelectronic properties of antimony on porous silicon as MSM photodetector. Journal of Fundamental and Applied Sciences 6.2: 175-186.
DOI: 10.4314/jfas.v6i2.4
14.Hasan A. Hadi · Sarab T. Kasim · Fadhil K. Farhan·Raid A. Ismail·and N. F. Habubi 2023. Effect of Porosity on Thermal Properties of Porous Silicon, Silicon 15.6: 2715-2725 DOI: https://doi.org/10.1007/s12633-022-02185-6)
15.Hermawan, A., N. L. W. Septiani, A. Taufik, B. Yuliarto, Suyatman, and S. Yin, 2021. Advanced strategies to improve performances of molybdenum-based gas sensors. Nano-Micro Letters, 13, 1-46.
https://doi.org/10.36103/2twexb46
16. Ismail, R. A., K. S. Khashan, and A.M. Alwan, 2017. Study of the Effect of Incorporation of CdS Nanoparticles on the Porous Silicon Photodetector. Silicon 9, 321–326. DOI: https://doi.org/10.1007/s12633-016-9446-4
17. Ji, H., Zeng, W., and Y. Li, 2019. Gas sensing mechanisms of metal oxide semiconductors: a focus review. Nanoscale, 11(47), 22664-22684.
DOI
https://doi.org/10.1039/C9NR07699A
18. Kavil, J., A. Alshahrie, and P. Periyat, 2018. CdS sensitized TiO2 nano heterostructures as sunlight driven photocatalyst. Nano- Structures & Nano-Objects, 16, 24-30. https://doi.org/10.1016/j.nanoso.2018.03.011
19. Kazeminezhad, I., N. Hekmat, and A. Kiasat, 2014. Effect of growth parameters on structural and optical properties of CdS nanowires prepared by polymer controlled solvothermal route. Fibers and Polymers, 15, 672-679. DOI: https://doi.org/10.1007/s12221-014-0672-3
20. Lisco, F., P. M. Kaminski, A. Abbas, K. Bass, J. W. Bowers, G. Claudio, and J. M Walls,. 2015. The structural properties of CdS deposited by chemical bath deposition and pulsed direct current magnetron sputtering. Thin solid films, 582, 323-327. https://doi.org/10.1016/j.tsf.2014.11.062
21. Lu, C., L. Zhang, Y. Zhang, S. Liu, and G. Liu, 2014. Fabrication of CdS/CdSe bilayer thin films by chemical bath deposition and electrodeposition, and their photoelectrochemical properties. Applied surface science, 319, 278-284. https://doi.org/10.1016/j.apsusc.2014.08.158
22. Majumder, S., A. C. Mendhe, and B. R. Sankapal, 2019. Nanoheterojunction through PbS nanoparticles anchored CdS nanowires towards solar cell application. international journal of hydrogen energy, 44(14), 7095-7107. https://doi.org/10.1016/j.ijhydene.2019.01.277
23. Mathew, X., J. P. Enriquez, A. Romeo, and A. N. Tiwari, 2004. CdTe/CdS solar cells on flexible substrates. Solar energy, 77(6), 831-838. https://doi.org/10.1016/j.solener.2004.06.020
24. Mhamdi, H., R. B. Zaghouani, Fiorido, T., J. L. Lazzari, M. Bendahan, and W. Dimassi, 2020. Study of n-WO 3/p-porous silicon structures for gas-sensing applications. Journal of Materials Science: Materials in Electronics, 31, 7862-7870.
DOI: https://doi.org/10.1007/s10854-020-03324-8
25. Mirzaei, A., J. H. Lee, S. M. Majhi, M. Weber, M. Bechelany, H. W. Kim, and S. S. Kim, 2019. Resistive gas sensors based on metal-oxide nanowires. Journal of Applied Physics, 126(24).DOI: https://doi.org/10.1063/1.5118805
26. Nan, Y. X., F. Chen, L. G. Yang, and H. Z. Chen, 2010. Electrochemical synthesis and charge transport properties of CdS nanocrystalline thin films with a conifer-like structure. The Journal of Physical Chemistry C, 114(27), 11911-11917.
DOI: https://doi.org/10.1021/jp103085n
27. Hayif, N. D., H. A. Hadi, and I. H. Hashim, 2025. Enhancing the gas sensing of porous silicon by surface modification using non-thermal plasma. Journal of Materials Science: Materials in Electronics, 36(13), 806. 36):806.
https://doi.org/10.1007/s10854-025-14867-z
28. Parasuraman, K., and P. Samiyammal et al. 2019. Improved magnetic and photocatalytic properties of spray deposited (Li+Co) codoped CdS thin films Superlattice. Microst. 129, : 28-39.DOI: https://doi.org/10.1016/j.spmi.2019.03.005
29. Perillo, P.M., and D.F. Rodriguez, 2024. CdS thin film sensor for NO2 and H2S detection at room temperature. Appl. Phys. A 130, 372.
https://doi.org/10.1007/s00339-024-07545-0
30. Qian, H., Z., Liu, J. Ya, Y. Xin, J. Ma, and X. Wu, 2021. Construction homojunction and co-catalyst in ZnIn2S4 photoelectrode by Co ion doping for efficient photoelectrochemical water splitting. Journal of Alloys and Compounds, 867, 159028.
DOI: https://doi.org/10.1016/j.jallcom.2021.159028
31. Rai, P., S. Raj, K. J. Ko, K. K. Park, and Y. T. Yu, 2013. Synthesis of flower-like ZnO microstructures for gas sensor applications. Sensors and Actuators B: Chemical, 178, 107-112 .
DOI: https://doi.org/10.1016/j.snb.2012.12.031
32. Raid A. I.., 2010. Fabrication and Characterization of Photodetector Based on Porous Silicon. e-Journal of surface Science and Nanotechnology 8: 388-391.
DOI: https://doi.org/10.1380/ejssnt.2010.388
33. Ratinac, K. R., W. Yang, S. P. Ringer, and F. Braet, 2010. Toward Ubiquitous Environmental Gas Sensors Capitalizing on the Promise of Graphene. Environmental science & technology, 44(4), 1167-1176. https://doi.org/10.1021/es902659d
34. Ramadan, M., M. S. Elnouby, O. El-Shazly, E. F. El-Wahidy, A. A. M. Farag, and N. Roushdy, 2022. Facile fabrication, structural and electrical investigations of cadmium sulfide nanoparticles for fuel cell performance. Materials for Renewable and Sustainable Energy, 11(3), 277-286.
DOI: https://doi.org/10.1007/s40243-022-00220-5
35. Rathinamala, I., N. Jeyakumaran, and N. Prithivikumaran, 2019. Sol-gel assisted spin coated CdS/PS electrode based glucose biosensor. Vacuum, 161, 291-296. https://doi.org/10.1016/j.vacuum.2018.12.045
36. Saha, U., and M. K. Alam, 2019. A hete rojunction bipolar transistor architecture-based solar cell using CBTSSe/CdS/ACZTSe materials. Solar Energy, 184, 664-671. DOI: https://doi.org/10.1016/j.solener.2019.04.044
37. Samiyammal, P., K. Parasuraman, and A. R. Balu, 2019. Improved magnetic and photocatalytic properties of spray deposited (Li+Co) codoped CdS thin films. Superlattices and Microstructures, 129, 28-39.
DOI: https://doi.org/10.1016/j.spmi.2019.03.005
38. smail, R. A., S. A. Huseen, and T. D. Abass, 2025. Preparation of High-performance BaTiO3 Nanoparticles-embedded Porous Silicon Photodetectors by Electro-chemical Etching and Laser Ablation in Liquid. Silicon 17, 205–218.
DOI:
https://doi.org/10.1007/s12633-024-03194-3.
39. Smt Swapna S., M. S Shinde, and R. S. Patil. 2016. Synthesis and Characterization of Cadmium Selenide Nanocrystalline Thin Films Prepared Using Novel Chemical Approach. J. Nano. Adv. Mat.; 4(2): 53-57.
DOI: http://dx.doi.org/10.18576/jnam/040202
40. Tabrizi, M. A., Ferré-Borrull, J., Kapruwan, P., and L. F. Marsal, 2019. A photoelectrochemical sandwich immunoassay for protein S 100β, a biomarker for Alzheimer’s disease, using an ITO electrode modified with a reduced graphene oxide-gold conjugate and CdS-labeled secondary antibody. Microchimica Acta, 186, 1-9.
DOI: https://doi.org/10.1007/s00604-018-3159-x
41. Waldiya, M., R. Narasimman, D. Bhagat, D. Vankhade, and I. Mukhopadhyay, 2019. Nanoparticulate CdS 2D array by chemical bath deposition: Characterization and optoelectronic study. Materials Chemistry and Physics, 226, 26-33. https://doi.org/10.1016/j.matchemphys.2019.01.017
42. Yadav, A. A, M. A., Barote, and E. U. Masumdar. Photoelectrochemical properties of spray deposited n-CdSe thin films. Solar Energy. 2010; 8: 763.
DOI: https://doi.org/10.1016/j.solener.2010.01.026
43. Zhang, H., D. Yang, and X. Ma, 2007. Synthesis of flower-like CdS nanostructures by organic-free hydrothermal process and their optical properties. Materials Letters, 61(16), 3507-3510 https://doi.org/10.1016/j.matlet.2006.11.105.
44. Zhang, Y., F. Zhang, H. Wang, L. Wang, F. Wang, Q. Lin, and L. S. Li, 2019. High-efficiency CdSe/CdS nanorod–based red light–emitting diodes. Optics express, 27(6), 7935-7944.
DOI: https://doi.org/10.1364/OE.27.007935
45. Zhuang, X., Y. Ouyang, X. Wang, and A. Pan, 2019. Multicolor semiconductor lasers. Advanced Optical Materials, 7(17), 1900071.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.