BIO -SYNTHEIS OF Fe2O3@SiO2@TiO2-Ag NANOCOMPOSITE USING ORANGE LEAVES EXTRACT AND ITS APPLICATION IN THE DEGRADATION OF METRONIDAZOLE USING SOLAR PHOTOCATALYTIC METHOD

Authors

  • F. A. Haider
  • A. I. Alwared

DOI:

https://doi.org/10.36103/8entn426

Keywords:

MTZ antibiotic; advanced oxidation process; sunlight; orange peel; coreshell-Ag.

Abstract

Sol-gel, co-precipitation, and photo-deposition techniques were combined to create an effective method for making Fe2O3@SiO2@TiO2-Ag nanoparticles magnetically separable photocatalyst. FTIR, SEM, EDS, and XRD techniques were used to characterize the Ag-doped composite using FTIR, SEM, EDS, and XRD. In addition, the prepared composites' photocatalytic activity was investigated for the degradation of Metronidazole (MTZ). Approximately 96.85% of MTZ had decomposed after 2 hours of exposure to the sunlight with 20 mg/L of nanocomposite at a pH of 5, within 15 m/ L of MTZ. In addition, the outcomes showed that the 1-order kinetic model described the MTZ degradation kinetics. Furthermore, the results present that the Ag-doped composite was extremely efficient and reusable after 5 cycles of separation. Catching photo-generated electrons made charge separation easier by altering magnetic TiO2 with silver nanoparticles, which led to an increase in the enhanced photoactive ability. These results, demonstrating the fabrication Fe2O3@SiO2@TiO2-Ag nanoparticles, hold promising applications for the elimination of pharmaceutical residues in the presence of sun exposure.

References

1.Abbasian, R., and H. Jafarizadeh-Malmiri, 2020. Green approach in gold, silver and selenium nanoparticles using coffee bean extract. Open Agriculture, 5(1), 761–767. https://doi.org/10.1515/opag-2020-0074.

2.Abbasiasl, H., M. Mehdi, and M. Ghaedi, 2021. Journal of Environmental Chemical Engineering Efficient degradation of metronidazole antibiotic by TiO2/Ag3PO4 /g – C3 N4 ternary composite photocatalyst in a continuous flow-loop photoreactor. Journal of Environmental Chemical Engineering, 9(5), 105963. https://doi.org/10.1016/j.jece.2021.105963.

3.Abdulmajeed, B. A., S. Hamadullah and F. A. Allawi 2019. Synthesis and characterization of titanium dioxide nanoparticles under different pH conditions. Journal of Engineering, 25(1), 40-50. https://doi.org/10.31026/j.eng.2019.01.04

4.Aboudalle, A., H. Djelal, F. Fourcade, L. Domergue, A. A. Assadi, T. Lendormi, S. Taha and A. Amrane 2018. Metronidazole removal by means of a combined system coupling an electro-Fenton process and a conventional biological treatment By-products monitoring and performance enhancement. Journal of Hazardous Materials, 359, 85-95. 10.1016/j.jhazmat.2018.07.006.

5.Alwared, A. I., F. A. Sulaiman, H. Raad, T.J. Al-Musawid and N. A. Mohammed 2023. Ability of FeNi3/SiO2/TiO2 nanocomposite to degrade amoxicillin in wastewater samples in solar light-driven processes. South African Journal of Botany, 153, 195-202. https://doi.org/10.1016/j.sajb.2022.12.031

6.Askari, N., M. Beheshti, D. Mowla, and M. Farhadian, 2020. Synthesis of CuWO4/Bi2S3 Z-scheme heterojunction with enhanced cephalexin photodegr-adation. Journal of Photochemistry and Photobiology A: Chemistry, 394, 112463. https://doi.org/10.1016/j.jphotochem.2020.112463

7.Chatterjee, A., D. Nishanthini, N. Sandhiya and J. Abraham 2016. Biosynthesis of titanium dioxide nanoparticles using Vigna radiata. Asian Journal of Pharmaceutical and Clinical Research, 85–88.

https://doi.org/10.22159/AJPCR.2016.V9S2.13405

8.Cheyne, R. W., T. A. Smith, L. Trembleau and A. C. Mclaughlin 2011. Synthesis and characterisation of biologically compatible TiO2 nanoparticles. Nanoscale research letters, 6(1), 1-6. https://doi.org/10.1186/1556-276X-6-423

9.Chi, Y., Q. Yuan, Y. Li, L. Zhao, N. Li, X. Li and W. Yan 2013. Magnetically separable Fe3O4@ SiO2@ TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity. Journal of hazardous materials, 262, 404-411.‏ https://doi.org/10.1016/j.jhazmat.2013.08.077

10.Cui, B., H. Peng, H. Xia, X. Guo and H. Guo 2013. Magnetically recoverable core–shell nanocomposites γ-Fe2O3@ SiO2@ TiO2–Ag with enhanced photocatalytic activity and antibacterial activity. Separation and Purification Technology, 103, 251-257. ‏ https://doi.org/10.1016/j.seppur.2012.10.008

11.Dabirvaziri, B., M. H. Givianrad, I. Sourinejad, A. M. Moradi and P. G. Mostafavi 2019. A simple and effective synthesis of magnetic γ-Fe2O3@ SiO2@ TiO2–Ag microspheres as a recyclable photocatalyst: dye degradation and antibacterial potential. Journal of Environmental Health Science and Engineering, 17, 949-960. ‏

doi: 10.1007/s40201-019-00410-w.

12.Du, H., N. Li, Y. Yang, Q. Li, G. Yang and Q. Wang 2023. Plasmonic Ag modified Ag3VO4/AgPMo S-scheme heterojunction photocatalyst for boosted Cr (VI) reduction under visible light: Performance and mechanism. Separation and Purification Technology, 304, 122204.‏

13.Du, H., N. Li, L. Yang, Q. Li, G. Yang, and Qi Wang, 2023. Plasmonic Ag modified Ag3VO4/AgPMo S-scheme heterojunction photocatalyst for boosted Cr(VI) reduction under visible light: Performance and mechanism, Separation and Purification Technology, 304, 2023,122204, https://doi.org/10.1016/j.seppur.2022.122204.

14. Fang, Y., Z. Li, B. Yang, S. Xu, X. Hu, Q. Liu and D. Lu 2014. Effect of dye structure on optical properties and photocatalytic behaviors of squaraine- sensitized TiO2 nanocomposites. The Journal of Physical Chemistry C, 118(29), 16113-16125.‏ https://doi.org/10.1021/jp502208.

15.Farzadkia, M., E. Bazrafshan, A. Esrafili, J. K. Yang and M. Shirzad-Siboni 2015. Photocatalytic degradation of metronidazole with illuminated TiO2 nanoparticles. Journal of Environmental Health Science and Engineering, 13, 1-8.‏ doi: 10.1186/s40201-015-0194-y.

16.Ganapathy, M., N. Senthilkumar, M. Vimalan, R. Jeysekaran and I. V. Potheher 2018. Studies on optical and electrical properties of green synthesized TiO2@ Ag core-shell nanocomposite material. Materials Research Express, 5(4), 045020.‏ doi: 10.1186/s40201-015-0194-y.

17.Ghasemi, Z., H. Younesi and A. A. Zinatizadeh 2016. Kinetics and thermodynamics of photocatalytic degradation of organic pollutants in petroleum refinery wastewater over nano-TiO2 supported on Fe-ZSM-5. Journal of the Taiwan Institute of Chemical Engineers, 65, 357-366.‏ https://doi.org/10.1016/j.jtice.2016.05.039

18.Ghasemy-Piranloo, F., S. Dadashian and F. Bavarsiha 2019. Fe3O4/SiO2/TiO2–Ag cubes with core/shell/shell nanostructure: synthesis, characterization and efficient photo-catalytic for phenol degradation. Journal of Materials Science: Materials in Electronics, 30(13), 12757-12768.‏

https://doi.org/10.1007/s10854-019-01641-1.

19.Görmez, F., Ö. Görmez, B. Gözmen and D. Kalderis 2019. Degradation of chloramphenicol and metronidazole by electro-Fenton process using graphene oxide-Fe3O4 as heterogeneous catalyst. Journal of Environmental Chemical Engineering, 7(2), 102990. https://doi.org/10.1016/j.jece.2019.102990

20.Hasan, Y. R., M. A. A. Shaban, M. A. Ibrahim, M. J. M-Ridha and H. A. Hussein 2023. Effect of calcination temperature on the adsorption performance of MG/AL layered double hydroxide nanoparticles in the removal of meropenem antibiotics. Iraqi Journal of Agricultural Sciences, 54(1), 42-58.‏ https://doi.org/10.36103/ijas.v54i1.1675

21.He, M., D. Li, D. Jiang and M. Chen 2012. Magnetically separable γ-Fe2O3@SiO2@Ce-doped TiO2 core–shell nanocomposites: Fabrication and visible-light-driven photocatalytic activity. Journal of Solid State Chemistry, 192, 139-14. https://doi.org/10.1016/j.jssc.2012.04.004

22.Hu. Y., G. Wang, M. Huang, K. Lin, Y. Yi, Z. Fang, P. Li, and K. Wang. 2017. Enhanced degradation of metronidazole by heterogeneous sono-Fenton reaction coupled ultrasound using Fe3O4 magnetic nanoparticles. Environmental Technology,1-22. doi: 10.1080/09593330.2017.1374470. Epub ahead of print. PMID: 28857685.

23.Huang, D. G., S. J. Liao, W. B. Zhou, S. Q. Quan, L. Liu, Z. J. He and J. B. Wan 2009. Synthesis of samarium- and nitrogen-co-doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4-chlorophenol. Journal of Physics and Chemistry of Solids, 70(5), 853–859. https://doi.org/10.1016/j.jpcs.2009.04.005

24.Joghataeian, M., A. Bahari, A. Qavami and M. J. Raeisi 2020. An antibacterial study of a new magnetic carbon nanotube/core-shell nanohybrids. Journal of Environmental Chemical Engineering, 8(5), 104150.‏ https://doi.org/10.1016/j.jece.2020.104150

25.Kargar, F., A. Bemani, M. H. Sayadi, N. Ahmadpour 2021. Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways. Journal of Photochemistry and Photobiology A: Chemistry, 419, 113453. https://doi.org/10.1016/j.jphotochem.2021.113453

26.Kaur, H., S. Kaur, J. Singh, M. Rawat and S. Kumar 2019. Expanding horizon: green synthesis of TiO2 nanoparticles using Carica papaya leaves for photocatalysis application. Materials Research Express, 6(9), 095034.‏ DOI 10.1088/2053-1591/ab2ec5

27.Kulkarni, V., V. Palled, S. Hiregoudar, K. Prakash, D. Maski and S. Lendra 2019. Biosynthesis and characterization of titanium dioxide nanoparticles (TiO2) using Azadirachta indica leaf (neem leaf) extract. International Journal of Current Microbiology and Applied Sciences 8, 2309-2317.‏ https://doi.org/10.1016/j.sajb.2019.05.024

28.Li, C. J., J. N. Wang, B. Wang, J. R. Gong and Z. Lin 2012. A novel magnetically separable TiO2/CoFe2O4 nanofiber with high photocatalytic activity under UV–vis light. Materials Research Bulletin, 47(2), 333-337.‏ https://doi.org/10.1016/j.materresbull.2011.11.012

29.Malakootian, M., A. Nasiri and M. Amiri Gharaghani 2020. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chemical Engineering Communications, 207(1), 56-72.‏ https://doi.org/10.1080/00986445.2019.1573168

30.Malakootian, M., N. Olama, M. Malakootian and A. Nasiri 2019. Photocatalytic degradation of metronidazole from aquatic solution by TiO2-doped Fe3+ nano-photocatalyst. International journal of environmental science and technology, 16, 4275-4284.‏ https://doi.org/10.1007/s13762-018-1836-2.

31.Marsooli, M. A., M. Rahimi-Nasrabadi, M. Fasihi-Ramandi, K. Adib, M. Eghbali-Arani, F. Ahmadi and Y. Joseph 2020. Preparation of Fe3O4/SiO2/TiO2/CeVO4 nanocomposites: investigation of photocatalytic effects on organic pollutants, bacterial environments, and new potential therapeutic candidate against cancer cells. Frontiers in pharmacology, 11, 192.‏ https:/doi: 10.3389/fphar.2020.00192. PMID: 32194419; PMCID: PMC7064640.

32.Mhemid, R.K.S., L.I. Saeed, and R.N. Mohammed, 2024 Photocatalytic removal of diazinon with Ag-coated SiO2@TiO2 core–shell using the response surface methodology. Int. J. Environ. Sci. Technol. 21, 329–340. https://doi.org/10.1007/s13762-023-05134-x.

33.Mohammed, I., J. Mohammed, A. U. Kende, A. M. Wara, Y. A. Aliero, U. Z. Magawata, A. B.Umar and A. K. Srivastava, 2023. Review on Y-type hexaferrite: synthesis, characterization and properties. Applied Surface Science Advances, 16, 100416. https://doi.org/10.1016/j.apsadv.2023.100416.

34.Mohanta, D., and M. Ahmaruzzaman, 2021. Facile fabrication of novel Fe3O4-SnO2-gC3N4 ternary nanocomposites and their photocatalytic properties towards the degradation of carbofuran. Chemosphere, 285, 131395. doi: 10.1016/j.chemosphere.2021.131395

35.Nabipour H., M. Hosaini Sadr and N. Thomas 2015. Synthesis, characterisation and sustained release properties of layered zinc hydroxide intercalated with amoxicillin trihydrate. Journal of Experimental Nanoscience, 10(16), 1269–1284. https://doi.org/10.1080/17458080.2014.998301

36.Nasseh, N., L. Taghavi, B. Barikbin and M. A. Nasseri 2018. Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. Journal of Cleaner Production, 179, 42-54. https://doi.org/10.1016/j.jclepro.2018.01.052

37.Nasseh, N., L. Taghavi, B. Barikbin, M. A. Nasseri and A. Allahresani 2019. FeNi3/SiO2 magnetic nanocomposite as an efficient and recyclable heterogeneous fenton-like catalyst for the oxidation of metronidazole in neutral environments: Adsorption and degradation studies. Composites Part B: Engineering, 166, 328-340.‏ https://doi.org/10.1016/j.compositesb.2018.11.112.

38. Olama N., M. Dehghani and M. Malakootian 2018. The removal of amoxicillin from aquatic solutions using the ¬ TiO2/UV C nanophotocatalytic method doped with trivalent iron. Applied Water Science, 8, 1–12. https://doi.org/10.1007/s13201-018-0733-7

39.Oliveira, A., E. M. Saggioro, T. Pavesi, J. C. Moreira and L. F. V. Ferreira 2012. Solar photo‐chemistry for environmental remediation-advanced oxidation processes for industrial wastewater treatment. Molecular Photochemistry-Various Aspects. Rijeka: InTech, 195-223.‏ http://dx.doi.org/10.5772/38444.

40.Rasheed, H. U., X. Lv, W. Wei, D. K. Sam, N.Ullah, J.Xie, & Zhu, W. (2019). Highly efficient photocatalytic degradation of the Tetracycline hydrochloride on the α-Fe2O3@CN composite under the visible light. Journal of Environmental Chemical Engineering, 7(5). https://doi.org/10.1016/j.jece.2019.103322

41.Rastkari, N., A. Eslami, S. Nasseri, E. Piroti and A. Asadi 2017. Optimizing parameters on nanophotocatalytic degradation of Ibuprofen using UVC/ZnO processes by response surface methodology. Polish Journal of Environmental Studies, 26(3).‏ https://doi.org/10.15244/pjoes/64931.

42.Safni, S., M. R. Wahyuni, K. Khoiriah and Y. Yusuf 2019. Degradation of Phenol by photolysis using N-doped TiO2 catalyst. Molekul, 14(1), 6-10. https://doi.10.20884/1.jm.2019.14.1.447.

43.Seidmohammadi, A., Y. Vaziri, A. Dargahi and H. Z. Nasab 2021. Improved degradation of metronidazole in a heterogeneous Photo-Fenton oxidation system with PAC/Fe3O4 magnetic catalyst: biodegradability, catalyst specifications, process optimization, and degradation pathway. Biomass Conversion and Biorefinery, 1-17.‏ https://doi.org/10.1007/s13399-021-01668-7

44.Shylesh, S., L. Wang and W. R. Thiel 2010. Palladium (II)‐Phosphine complexes supported on magnetic nanoparticles: filtration‐free, recyclable catalysts for suzuki–miyaura cross‐coupling reactions. Advanced Synthesis and Catalysis, 352(2‐3), 425-432.

https://doi.org/10.1002/adsc.200900698

45.Sulaiman F. A., R. K. S. Mhemid, and N. A. Mohammed 2025. Enhanced 4-chlorophenol adsorption from aqueous solution using eco-friendly nanocomposite. Ecological Engineering and Environmental Technology. 26(5), 174–189. https://doi.org/10.12912/27197050/203126.

46.Sutrisno H., E. D. Siswani and K. S. Budiasih 2018. The effect of sintering temperatures of TiO2 (B)-nanotubes on its microstructure. Science of Sintering, 50(3), 291-298. https://doi.org/10.2298/SOS1803291S

47.Xue, C., Q. Zhang, J. Li, X. Chou, W. Zhang, H. Ye and P. J. Dobson 2013. High photocatalytic activity of Fe3O4-SiO2-TiO2 functional particles with core-shell structure. Journal of Nanomaterials, 2-2. https://doi.org/10.1155/2013/762423

Downloads

Published

2025-08-25

Issue

Section

Articles

How to Cite

F. A. Haider, & A. I. Alwared. (2025). BIO -SYNTHEIS OF Fe2O3@SiO2@TiO2-Ag NANOCOMPOSITE USING ORANGE LEAVES EXTRACT AND ITS APPLICATION IN THE DEGRADATION OF METRONIDAZOLE USING SOLAR PHOTOCATALYTIC METHOD. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(4), 1546-1560. https://doi.org/10.36103/8entn426