PHYTOREMEDIATION ROLE IN INCREASING RICE (Oryza Sativa L.) PRODUCTION WITH REDUCED MERCURY CONTENT IN MERCURY CONTAMINATED SOIL
DOI:
https://doi.org/10.36103/j0168r97Keywords:
Food, Hg, Heavy Metal, Pollution, food safetyAbstract
This study aimed to obtain phytoremediator that have better effectiveness to accumulating mercury so as to reduce mercury content in grains, research was conducted on mercury-contaminated rice fields. The study was conducted withim randomized block design with 3 replications. First factors are varieties namely Ciherang, IR-64, Siganteng (local variety), and Inpari-32, the second are the type of phytoremediator, namely: Kiambang, Eceng Gondok and Jerango and third factor are population of phytoremediator, namely: without phytoremediator, 5, 10 and 15 plants per plot. The plot size used was 1 metre x 2 meters with 20 rice plants per plot. The results showed that there was a decrease in mercury content in rice grains of all varieties below the quality standard threshold in eceng gondok and jerango treatments with population 10 and 15 plants per plot. The results obtained to reduce the mercury content below the quality standard threshold with high production can be done by the application of jerango phytoremediators with population 10 plants per plot with the best variety is IR-64.
References
1. Ahmad, M., E. S. Marson, and H. Hamzah. 2021. Spectrophotometric method for Hg(ii) determination in aqueous environment using zinc-dithizonate complex. Asean J. Sci. Technol. Dev, 18(1): 25-34. https://doi.org/10.29037/ajstd.194
2. Ali, A. A. (2023). Accumulation of Toxic Elements Disrupts Metabolic Processes in the Human: Review. J. Biomed. Biochem, 2(1):42-50 https://doi.org/10.57238/jbb.2023.6701.1029
3. Aslam, M. W., Meng, B., Abdelhafiz, M. A., Liu, J., & Feng, X. 2022. Unravelling the interactive effect of soil and atmospheric mercury influencing mercury distribution and accumulation in the soil-rice system. Science of the Total Environment, 803, 149967. https://doi.org/10.1016/j.scitotenv.2021.149967
4. Abeysinghe, K. S., Qiu, G., Goodale, E., Anderson, C. W., Bishop, K., Evers, D. C., ... & Feng, X. 2017. Mercury flow through an Asian rice-based food web. Environmental Pollution, 229, 219-228. https://doi.org/10.1016/j.envpol.2017.05.067
5. Asgher, M., A. Rehaman, S.N. Ul-Islam, and N. A. Khan. 2024. Multifaceted roles of silicon nano particles in heavy metals-stressed plant. Environ. Pollut, 341: 1-14. https://doi.org/10.1016/j.envpol.2023.122886
6. Bath, J. A., S. M. Shivaraj, P. Singh, D.B. Navadagi, D. K. Tripathi, P. K. Dash, A.U. Solanke, H. Sonah, and R. Deshmukh. 2019. Role of Silicon in Mitigation of Heavy Metal Stresses in Crop Plants. Plants, 8(7): 1-20. https://doi.org/10.3390/plants8030071
7. De Luca, A., M. Correl., M, Cgivet, M.A. Parrado, J.M. Pardo, and E.O. Leidi. 2021. Reassessing the Role of Potassium in Tomato Grown with Water Shortage. Hortic, 7(2): 1-13. https://doi.org/10.3390/horticulturae7020020
8. Du, J., F. Liu, L. Zhao, C. Liu, Z. Fu, Y. Teng. 2021. Mercury horizontal spatial distribution in paddy field and accumulation of mercury in rice as well as their influencing factors in a typical mining area of Tongren City, Guizhou, China. J Environ Health Sci Eng, 19:1555–1567. https://doi.org/10.1007/s40201-021-00711-z
9. El Sayed, A. I., A.H. Mohamed, M.S. Rafudeen, A.A. Omar, M.F. Awad, and E. Mansour. 2022. Polyamines mitigate the destructive impacts of salinity stress by enhancing photosynthetic capacity, antioxidant defense system and upregulation of calvin cycle-related genes in rapeseed (Brassica napus L.). Saudi. J. Biol. Sci, 29:3675–3686. https://doi.org/10.1016/j.sjbs.2022.02.053
10. Emamverdian, A., Y. Ding, F. Mokhberdoran, and Y. Xie. 2015. Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Hindawi Publishing Corporation, Sci. World. J, 2015:1-18. http://dx.doi.org/10.1155/2015/756120
11. Fan, J., X. Xia, Z. Hu, N. Ziadi, and C. Liu. 2013. Excessive sulfur supply reduces arsenic accumulation. Plant Soil Env, 59(4):169-74. https://doi.org/10.17221/882/2012-PSE
12. Farid, M., M.B. Shakoor, A. Ehsan, S. Ali, M. Zubair, and M.S. Hanif. 2013. Morphological, physiological and biochemical responses of different plant species to Cd stress, Int. J. Chem. Biochem. Sci, 3: 53–60.
13. Feng J, Chen L, Zuo J. 2019. Protein S-nitrosylation in plants: current progresses and challenges. J Integr Plant Biol. 61(12):1206-1223. https://doi.org/10.1111/jipb.12780
14. Food and Drug Admin., Indonesia No. 5, 2018
15. Giwa. A.S., J.M. Ndungutse, Y. Li, A. Mabi, X. Liu, and M.Vakili. 2022. Modification of biochar with Fe3O4 and humic acid-salt for removal of mercury from aqueous solutions: a review. Environ Pollut Bioavailab, 34:352–64. https://doi.org/10.1080/26395940.2022.2115402
16. Hall, J. L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot, 53(366): 1–11. 10.1093/jxb/53.366.1
17. Hossain, M. A., P. Piyatida, J.A.T. da Silva, and M. Fujita. 2012. Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation, J. Bot, 2012:37. 10.1155/2012/872875
18. Johnson, R., K. Vishwakarma, M. S. Hosen, V. Kumar, A.M. Shachira, J.T. Puthur, G. Abdi, and M. Sarraf. 2022. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant. Physiol. Biochem, 172:56–69. https://doi.org/10.1016/j.plaphy.2022.01.001
19. Kong, C. H., T.D. Xuan, T.D. Khanh, H.D. Tran, and N.T. Trung. 2019. Allelochemicals and signaling chemicals in plants. Molecules, 24(15): 2737. https://doi.org/10.3390/molecules24152737
20. Kooyers, N. J. 2015. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci. 234:155–162. https://doi.org/10.1016/j.plantsci.2015.02.012
21. Kudryashova, K.S., O.V. Nekrasova, M. P. Kirdichnikov, and A.V. Feofanov. 2021. Chimeras of KcsA and Kv1 as a bioengineering tool to study voltage-gated potassium channels and their ligands. Biochem. Pharmacol, 190(2021):114646. https://doi.org/10.1016/j.bcp.2021.114646
22. Mariwy, A., J.B. Manuhutu, and Frans D. 2021. Bioaccumulated Mercury by Several Types of Plants in Ex-Traditional Gold Processing Area, Gogorea Village, Buru Island. J. Chem. Res, 9(2):105–10. 10.30598//ijcr.2020.9-abr
23. Mora, M. R., V.M.F. Pastrana, D. G. Reguero, L.L.G. Oliva, A.P. Lobo, and P.A.J. Gómez. 2022. Oxidative stress protection and growth promotion activity of Pseudomonas mercuritolerans sp. nov., in forage plants under mercury abiotic stress conditions. Front Microbiol, 13:1032901. https://doi.org/10.3389/fmicb.2022.1032901
24. Morales, M., D.A. Roach, B.M. Quarles, A. Cotado, R. Salguero-Gómez, J. Dwyer, and S. Munne-Bosch. 2021. Validity of photo-oxidative stress markers and stress-related phytohormones as predictive proxies of mortality risk in the perennial herb Plantago lanceolata. Environ. Exp. Bot, 191(2021):104598. https://doi.org/10.1016/j.envexpbot.2021.104598
25. Murugaiyan, V., J. Ali, A. Mahender, U.M. Aslam, Z.A. Jewel, and Y. Pang, Marfori-Nazarea C M, Wu L, Frei M, Li Z. 2019. Mapping of genomic regions associated with arsenic toxicity stress in a backcross breeding populations of rice (Oryza sativa L.). Rice, 12(61):1-14.
https://doi.org/10.1186/s12284-019-0321-y
26. Nazir, M., I. Idrees, P. Idrees, S. Ahmad, Q. Ali, and A. Malik. 2020. Potential of water hyacinth (Eichhornia crassipes l.) for phytoremediation of heavy metals from waste water. Biol. Clin. Sci. Res, 2020(1):1-6. https://doi.org/10.54112/bcsrj.v2020i1.6
27. Ni`mah, L., M.A. Anshari, H.A. Saputra, A. Rahmadi, and U. Fitriati. 2019. Utilization of Parupuk Plants (Phragmites karka) To Reduce Merkuri Levels In Waters Former Of Diamond And Golden Mining. MATEC Web of Conferences 280. https://doi.org/10.1051/matecconf/201928005012
28. Qu. C., S. Albanese, A. Lima, D. Hope, P. Pond, A. Fortelli, N. Romano, P. Cerino, A. Pizzolante, and B. De Vivo. 2019. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: implications for sources and environmental processes. Environ. Int, 124:89–97. https://doi.org/10.1016/j.envint.2018.12.031
29. Rothenberg, S. E., Feng, X., Dong, B., Shang, L., Yin, R., & Yuan, X. 2011. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies. Environmental Pollution, 159(5), 1283-1289. https://doi.org/10.1016/j.envpol.2011.01.027
30. Rice, K.M., E.M. Walker, M. Wu, C. Gillette, and E. R. Blough. 2014. Environmental Mercury and Its Toxic Effects. J Prev Med Public Health, 47(2):74–83. https://doi.org/10.3961/jpmph.2014.47.2.74
31. Sade, N., M.M. Rubio-Wilhelmi, K. Umnajkitikorn, and E. Blumwald. 2018. Stress-induced senescence and plant tolerance to abiotic stress. J Exp Bot, 69:845–853. https://doi.org/10.1093/jxb/erx235
32. Saini., S, N. Kaur, and P.K. Pati. 2021. Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicol. Environ. Saf, 223(2021):1-14. https://doi.org/10.1016/j.ecoenv.2021.112578
33. Sestak, I., N. Bilandzija, A. Percin, I. Fadljevic, I. Hrelja, Z. Zgorelec. 2022. Assessment of the impact of soil contamination with cadmium and merkuri on leaf nitrogen content and miscanthus yield applying proximal spectroscopy. Agronomy, 12(255): 1-14. https://doi.org/10.3390/agronomy12020255
34. Søvik, M. L., Larssen, T., Vogt, R. D., Wibetoe, G., & Feng, X. 2011. Potentially harmful elements in rice paddy fields in mercury hot spots in Guizhou, China. Applied Geochemistry, 26(2), 167-173. https://doi.org/10.1016/j.apgeochem.2010.11.015
35. Shomali, A., S. Das, M. Sarraf, R. Johnson, E. Janeeshma, V. Kumar, S. Aliniaeifard, J. T. Puthur, and M. Hasanuzzaman. 2024. Modulation of plant photosynthetic processes during metal and metalloid stress, and strategies for manipulating photosynthesis-related traits. Plant. Physiol. Biochem, 206(2024):108211. https://doi.org/10.1016/j.plaphy.2023.108211
36. Suganthi, R., and S. Avudainayagam. 2022. Biochemical and Physiological response of Brassica juncea and Nephrolepis exaltata in Mercury spiked soil. In Technoarete Research and Development Association, 2022:36–43. https://doi.org/10.36647/978-93-92106-02-6.8
37. Syahril, M., Rosmayati, and N. Rahmawati. 2024. Distribution of mercury contamination on paddy fields in various levels of soil depth in gold mine area at Sub-District Hutabargot, Mandailing Natal Regency, Indonesia. Proceed. IOP Conf. Series: Earth Environ. Sci. 1: 1352. https://doi.org/10.1088/1755-1315/1352/1/012100
38. Tiodar, E. D., C. L. Văcar, and D. Podar. 2021. Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: Challenges and perspectives. Vol. 18, Int J Env Res Public Health, 2021:1–38. https://doi.org/10.3390/ijerph18052435
39. Triyanti, V. R., Rosmayati, M. Basyuni, and R.I.M. Damanik. 2024. Distribution and source of contamination of heavy metal mercury at paddy field in Mandailing Natal Regency, North Sumatera, Indonesia. Proceed. IOP Conf. Series: Earth Environ Sci 1:1352. https://doi.org/10.1088/1755-1315/1352/1/012102
40. Wang, C.Q., T. Wang, P. Mu, Z. C. Li, and L. Yang. 2013. Quantitative trait loci for merkuri tolerance in rice seedlings. Rice Sci, 20(3):238-242. https://doi.org/10.1016/S1672-6308(13)60124-9
41. Wang, Z,, T. Sun, C.T. Driscoll, Y. Yin, and X. Zhang. 2018. Mechanism of accumulation of methylmerkuri in rice (Oryza sativa L.) in a merkuri mining area. Environ. Sci. Technol, 52:9749–57. 10.1021/acs.est.8b01783
42. WHO. 2021. Merkuri and Human Health: Edicational course. Regional Office for Europe. https://apps.who.int/iris/handle/10665/345443
43. Wu, C., G. Wu, Z. Wang, Z. Zhang, Y. Qian, and L. Ju. 2018. Soil merkuri speciation and accumulation in rice (Oryza sativa L.) grown in wastewater-irrigated farms. Appl Geochem, 89:202–209. https://doi.org/10.1016/j.apgeochem.2017.12.009
44. Zaetun, S., L.B.K. Dewi, N.L.P.S. A. Sutami, and L. Srigede. 2015. Description about Mercury (Hg) Concentration after Planting Enceng Gondok (Echorina crassipes) Using Spectrophotometer UV-Vis. J. Riset. Kes, 4:700-707. 10.31983/jrk.v4i1.349
45. Zhao, H., Yan, H., Zhang, L., Sun, G., Li, P., & Feng, X. 2019. Mercury contents in rice and potential health risks across China. Environment International, 126, 406-412. https://doi.org/10.1016/j.envint.2019.02.055
46. Zhang. J., S. Wu, Z. Xu, M. Wang, Y.B. Man, P. Christie, P. Liang, S. Shan, and A.H. Wong. 2019. The role of sewage sludge biochar in methylmercury formation and accumulation in rice. Chemosphere, 218(2019):527–33. https://doi.org/10.1016/j.chemosphere.2018.11.090
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.