PROLACTIN AND RECEPTOR GENE POLYMORPHISM AND THEIR ASSOCIATION WITH SOME PRODUCTIVE TRAITS OF HOLSTEIN COWS

Authors

  • R. H. Al-Obaidi
  • H. R. A. Al-Janabi

DOI:

https://doi.org/10.36103/r2pc7s61

Keywords:

milk production, genotypes, lactation period, persistency period, reproduction

Abstract

This study was conducted at Al-Khalis Dairy Cattle Station in Diyala Governorate during the productive season during 2021–2022. 63 Holstein cows were selected randomly to study the effect of prolactin gene (PRL) and prolactin gene receptor (PRLR) polymorphism on milk production, milk components, and reproductive traits in Holstein dairy cows. The results showed three SNPs of PRL gene (TT, TC, and CC). There are highly significant differences (P>0.01) between the percentages of the genotypes, which reached (79.37, 17.46, and 3.17% , respectively ) and three SNPs for PRLR gene ( TT , TA and AA with percentage  47.62 , 41.27 and 11.11 respectively) in Holstein dairy cows in Iraq. the results showed there were a significant effect of TC genotype (4187.82 kg) of total milk yield compared with TT (4013.02 kg ) and CC (3505.00 kg) The polymorphism for PRL gene The total milk production was higher in TA genotype (4321.04 kg) followed than TT genotype (4025.53 kg) and AA genotype (2877.33 kg) for PRLR gene. The polymorphism of the PRL and PRLR genes did not significantly effects on the reproductive traits and milk components except for fat percentage in the PRL gene and lactose percentage in the PRLR gene. It can be concluded, a highly significant relationship between the prolactin gene and the prolactin receptor gene with milk production, so it can be used for genetic improvement of milk cows.

References

1. Abd El Fattah, E. M., T. S. Behour, A. F. Ashour, and A. M. S. Amin. 2022. Association analysis of prolactin and prolactin receptor genes with selected productive and reproductive traits in Egyptian buffalo. Animal Biotechnology, 11, 1-9. https://doi.org/10.1080/10495398.2022.2028160

2. Abdulkareem, T. A., S. A. Alsharifi, S. M. Eidan, and R. G. Sasser. 2012. Reproductive and productive performance of Iraqi buffaloes as influenced by pre-mating‏ and pre-calving concentrate supplementation. Pak. Vet. J., 32(3), 345-348.

3. Aboud, R. S. 2015. Assessment of serum prolactin level in patients women with rheumatoid arthritis. Baghdad Science Journal, 12(1),‏ 90-95. https://doi.org/10.21123/bsj.2015.12.1.90-95

4. Alipanah, M., Z. Roudbari, A. Esmailizadeh, I. Y. Javan, and F. Qarari. 2023. The relationships between PRL/Rsa I polymorphism in prolactin gene and milk production in cattle: A Meta-analysis. Large Animal Review, 29(1). 9-14.

5. Al-Kal, A., Q.Y. Jiang, G. S. Qin, B. Pan, B.J. Chen, and H.S. Jiang. 2019. Associations between prolactin receptor (PRLR) polymorphisms and milk production traits in dairy buffalo. Canad. J. Anim. Sci., 99(2), 254–259.

https://doi.org/10.1139/cjas-2018-0050

6. Altman, M. D., A. T. Mathews, M. B. Rabaglino, R. C. Hovey, and A. C. Denicol. 2025. Canonical prolactin signaling and global mRNA expression in the skin of Holstein heifers carrying the SLICK1 allele of the prolactin receptor gene. J. Dairy Sci., 108(4), 4422–4434. https://doi.org/10.3168/jds.2024-25821

7. Beishova, I.S., A.V. Belaya, Y.A. Yuldashbayev, G.D. Chuzhebayeva, V.A. Ulyanov, T.V. Ulyanova, A.M. Kovalchuk, U.Z. Kuzhebayeva, and A.M. Namet. 2023. Genetic polymorphism of prolactin and nitric oxide synthase in Holstein cattle. Veterinary World, 16(1), 161–167. https://doi.org/10.14202/vetworld.2023.161-167

8. Beishova, I., A. Belayab, U. Kuzhebayevaa, T. Ulyanovaa, V. Ulyanova, R. Beishovc, N. Ginayatova , A. Kovalchuka, A. Kharzhaua, and A. Sidarovaa. 2024. Association of polymorphic variants of prolactin (PRL) and beta-lactoglobulin (BLG) genes with resistance/susceptibility to mastitis in holstein cows. Brazilian J. Biol., 84(12), e284961. https://doi.org/10.1590/1519-6984.284961

9. Bekele , R., M. Taye , G. Abebe, and S. Meseret. 2023. Genomic regions and candidate genes associated with milk production traits in Holstein and its crossbred cattle: A review. International J. Genom., 1, 18. https://doi.org/10.1155/2023/8497453

10. Cockburn, M. 2020. Application and prospective discussion of machine learning for the management of dairy farms. Animals, 10(9), 1690.‏ https://doi.org/10.3390/ani10091690

11. Cuellar, C. J., T. F. Amaral, P. Rodriguez-Villamil, F. Ongaratto, D. O. Martinez, R. Labrecque, J. D. D. A. Losano, E. Estrada-Cortes, J. R. Bostrom, K. Martins, D. O. Rae, J. Block, Q. A. Hoorn, B. W. Daigneault, J. Merriam, M. Lohuis, S. Dikmen, J. H. J. Bittar, T. S. Maia, D. F. Carlson, S. Larson, T. S. Sonstegard, and P. J. Hansen. 2024. Consequences of gene editing of PRLR on thermotolerance, growth, and male reproduction in cattle. FASEB BioAdvances, 6(8), 223–234. https://doi.org/10.1096/fba.2024-00029

12. De Vries, A. and M. I. Marcondes. 2020. Overview of factors affecting productive lifespan of dairy cows. Animal, 14(1), 155-164.‏ https://doi.org/10.1017/S1751731119003264

13. Duncan, D. B. 1955. Multiple rang and multiple F-test. Biometrics. 11, 4-42. https://doi.org/10.2307/3001478

14. Eidan, S. M. and S. A. Khudhir. 2023. Association between ATPIAI gene polymorphisms with semen characteristics in Holstein bulls. Iraqi Journal of Agricultural Sciences, 54(2), 330-337. https://doi.org/10.36103/ijas.v54i2.1706

15. El-Magd , M. A., A. Fathy, K. A. Kahilo, A. A. Saleh, A. I. El-Sheikh, S. AL-Shami, and S. M. El-Komy. 2021. Polymorphisms of the PRLR gene and their association with milk production traits in Egyptian buffaloes. Animals, 11(5), 1237. https://doi.org/10.3390/ani11051237

16. Fang, Q., H. Zhang, Q. Gao, L. Hu, F. Zhang, Q. Xu, and Y. Wang. 2025. Association of genes TRH, PRL and PRLR with milk performance, reproductive traits and heat stress response in dairy cattle. Int. J. Mol. Sci., 26, 1963. https://doi.org/10.3390/ijms26051963

17. Gai, N., T. Uniacke-Lowe, J. O’Regan , H. Faulkner, and A. L. Kelly. 2021. Effect of protein genotypes on physicochemical properties and protein functionality of bovine milk: A review. Foods, 10(10), 2409. https://doi.org/10.3390/foods10102409

18. Hou,X., S. Song, Z. Xu, Y. Shi, Y. Yang, L. Zhang, Y. Cui. 2024. Prolactin upregulates amino acid uptake in dairy cow mammary epithelial cells via LAT1. J. Dairy Sci.,, 107(11), 9948–9959. https://doi.org/10.3168/jds.2024-24746

19. Ilie, E.D., A. E. Mizeranschi, C. V. Mihali, R. I. Neamt, L. T. Cziszter, M. Carabas, and A. C. Gradinaru. 2023. Polymorphism of the prolactin (PRL) gene and its effect on milk production traits in Romanian cattle breeds. Vet. Sci., 10(4), 275. https://doi.org/10.3390/vetsci10040275

20. Kale, D. S., J. Singh, Y. B. Sathe, A. Wankhade, P. D. Dudule, D. V. Patil, and G. R. Gowane. 2024. Association of prolactin gene polymorphism with milk production traits in Gaolao cattl. Journal of the Indonesian Trop. Anim. Agric., 49(3),193-203. https://doi.org/10.14710/jitaa.49.3.193-203

21. Khalid, W.A. and N.N. Al-Anbari. 2024. Effect of glycerol on performance and some blood characteristics of Holstein calves. Iraqi Journal of Agricultural Sciences, 55(1), 382–391. https://doi.org/10.36103/731zw966

22. Lacasse, P., S. Ollier,V. Lollivier, and M. Boutinaud. 2015. New insights into the importance of prolactin in dairy ruminants1. J. Dairy Sci., 99(1), 864–874. http://dx.doi.org/10.3168/jds.2015-10035

23. Lanctot, S., A.M. Deacon, C. Thibault, R. Blouin, and P. Lacasse. 2025. Effect of prolactin concentration during the dry period on the subsequent milk production of dairy cows. J. Dairy Sci., 108(1), 996–1006. https://doi.org/10.3168/jds.2024-25164

24. Lemos, D.R. de, J. F. da S. e Souza, E. D. de Souza, N. Z. Saraiva, C. C. R. Quintao, L. G. B. Siqueira, C. S. Oliveira, L. S. de A. Camargo. 2023. Multiple mutations can be found in the exon 11 of prolactin receptor gene in crossbred bovine embryos. Anim. Reprod., 20(2), 2023.

25. Lopdell, T. J. 2023. Using QTL to Identify genes and pathways underlying the regulation and production of milk components in cattle.‏ Animals, 13(5), 911. https://doi.org/10.3390/ani13050911

26. Mao, Y., H. Yang, X. Ma, C. Wang, L. Zhang, and Y. Cui. 2023. Prolactin regulates RANKL expression via signal transducer and activator of transcription 5a signaling in mammary epithelial cells of dairy cows. Cell Biology International, 47 (5), 920-928. https://doi.org/10.1002/cbin.11988

27. Mendonca, L. C., W. A. Carvalho, M. M. Campos, G. N. Souza, S. A. de Oliveira, G. K. F. Meringhe, and J. A. Negrao. 2025. Heat stress affects milk yield, milk quality, and gene expression profiles in mammary cells of Girolando cows. J. Dairy Sci., 108(1), 1039–1049. https://doi.org/10.3168/jds.2024-25498

28. Mikail, N., R. Cue, and G. Bakir. 2019. Most probable producing ability as a within-herd management and culling tool. The Journal of Animal and Plant Sciences, 29(1), 48-57. https://www.researchgate.net/publication/331100526

29. Motmain, Z., M. Ozdemir, K. Ekinci, E. Saygili, and E. Bilgin. 2022. A meta-analysis of the associations between prolactin (PRL) gene polymorphism and milk production traits in cattle. kafkas universitesi veteriner fakultesi Dergisi, 28(5), ‏627-631. https://doi.org/10.9775/kvfd.2022.27857

30. Murillo, J.M.F., A. J. Landaeta-Hernandez, E. Kim, J. R. Bostrom, S. A. Larson, A. M. Perez O'Brien, M. A. Montero-Urdaneta, J. F. Garcia, and T. S. Sonstegard. 2020. Three novel nonsense mutations of prolactin receptor found in heat-tolerant Bos taurus breeds of the Caribbean Basin. Animal Genetics, 52(1), 132-140.

https://doi.org/10.1111/age.13027

31. Paul, B. K.. J. CJ Groot, B. L Maass, A. M. Notenbaert, M. Herrero, and P. A Tittonell. 2020. Improved feeding and forages at a crossroads: Farming systems approaches for sustainable livestock development in East Africa. Outlook on Agriculture, 49(1), 13-20. https://doi.org/10.1177/0030727020906170

32. Pozzebon, M., B. Guldbrandtsen, and P. Sandoe. 2024. Gene editing cattle for enhancing heat tolerance: A welfare review of the “PRLR-SLICK cattle” case. NanoEthics, 18(2),6. https://doi.org/10.1007/s11569-024-00455-8

33. Prasetyowati, M. H., L. A. Pradista, N. Widyas, and S. Prastowo. 2021. Estimation of most probable producing ability of Bali cattle semen quality. IOP Conf. Ser.: Earth Environ. Sci., 902, 012008. https://doi.org/10.1088/1755-1315/902/1/012008

34. Sambrook, M. A. 1989. Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey. Neuropharmacology, 28(11), 1271-1273. https://doi.org/10.1016/0028-3908(89)90221-9

35. SAS. 2018. Statistical analysis system, user's guide. Statistical. Version 9.4th ed. SAS. Inst. Inc. Cary. N.C. USA.

36. Setyorini, Y.W., S. Sutopo, E. Kurnianto, and S. Sutiyono. 2023. Polymorphism of SNP g.8398A>G at prolactin gene and its effect on Indonesian Holstein dairy cow’s milk performance and reproductive traits. J. Indonesian Trop. Anim. Agric., 48(1), 10-19. https://doi.org/10.14710/jitaa.48.1. 10-19

37. Supriyantono, A., T.W. Widayati, and I. Sumpe. 2017. Most probable producing ability of Bali cows for calving interval and calf growth performance. J. Agric. Sci., Technol., A7(6), 426-431. https://doi.org/10.17265/2161-6256/2017.06.008

38. Wang, Y. X. Cui, and Z. Chen. 2025. Innovations in Cattle Breeding Technology: Prospects in the Era of Gene Editing. Animals, 15(10), 1364. https://doi.org/10.3390/ani15101364

39. Yu, Y., X. Yuan, P. Li, Y. Wang, M. Yu, and X. Gao. 2020. Vaccarin promotes proliferation of and milk synthesis in bovine mammary epithelial cells through the PRLR receptor-PI3K signaling pathway. European Journal of Pharmacology, 880, 173190.‏ https://doi.org/10.1016/j.ejphar.2020.173190

40. Zhang, J., L. Zan, P. Fang, F. Zhang, G. Shen, and W. Tian. 2008. Genetic variation of PRLR gene and association with milk performance traits in dairy cattle. Canad. J. Anim. Sci., 88(1), 33-39. https://doi.org/10.4141/CJAS07052

Downloads

Published

2025-08-25

Issue

Section

Articles

How to Cite

R. H. Al-Obaidi, & H. R. A. Al-Janabi. (2025). PROLACTIN AND RECEPTOR GENE POLYMORPHISM AND THEIR ASSOCIATION WITH SOME PRODUCTIVE TRAITS OF HOLSTEIN COWS. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(4), 1305-1315. https://doi.org/10.36103/r2pc7s61