RELATIONSHIP OF LEI0234 MARKER WITH SOME PRODUCTIVE TRAITS OF LOCAL CHICKENS
DOI:
https://doi.org/10.36103/jrvrsw98Keywords:
DNA extraction, age at sexual maturity, egg weight, microsatellite marker, Polymerase chain reactionAbstract
This study utilized 100 local Iraqi laying hens, aged 67 days, which were individually housed in numbered cages (1 to 100) for the duration of the experiment, conducted from October 26, 2021, to March 5, 2022. The results revealed highly significant differences (P ≤ 0.01) in the number and frequency of the LEI0234 marker among the different alleles, with the A1 allele showing superior performance compared to the other alleles. The A1 allele appeared in various genotypic forms, with a frequency of 27.00%. No significant differences were observed among the alleles in terms of body weight, age at sexual maturity, egg mass, or feed conversion efficiency. However, significant differences (P ≤ 0.05) were recorded during the 84-day period. Egg weight showed significant differences (P ≤ 0.05) during the production periods of 14 and 28 days. However, no significant differences were observed during the subsequent periods of 42, 56, 70, 84, 98, and 100 days. In contrast, feed consumption exhibited significant differences (P ≤ 0.05) during the production periods of 14, 28, 42, 56, 98, and 100 days.
References
1. Abdel Karim, H.D., and A .A. Noori .2023. Relationship of LEI0258 marker on some pro-ductive traits of Iraqi local chickens. IOP Conf. Ser.: Earth Environ. Sci. 1252: 012129. https://doi.org/10.1088/1755-1315/1252/1/012129
2. Al-Ghabban, A. J. SH.,W.M. Razuki and E.H. Al-Anbari. 2025. Estimation of genetic parameters and breeding value of sexual and egg production traits in Iraqi local chickens. Iraqi Journal of Agricultural Sciences, 56(3):966-975. https://doi.org/10.36103/65fkcr44
3. Al-Khatib, B. G.M., D. M. Zamil and W. J. Al-Izzi. 2025. Presence and absence of quanti-tative traits loci (QTL) region on chromosome z and its effect on some productive and physi-ological traits in local Iraqi chicken. Iraqi Jour-nal of Agricultural Sciences, 56(3):1001-1009. https://doi.org/10.36103/2k5q4778
4. Azimu, W., B. Manatbay, Y. Li, D. Kai-maerdand , H. E. Wang, A. Rehemana and G. Muhatai. 2018. Genetic diversity and popula-tion structure analysis of eight local chicken breeds of Southern Xinjiang. British. Poult. Sci, 59(6): 629-635. https://doi.org/10.1080/00071668.2018.1523537
5. Becker, S.; Büscher, W. and I. Tiemann. 2023. The British Ixworth: Individual growth and egg production of a purebred dual-purpose chicken. Br. Poult. Sci. 64, 659–669. https://doi.org/10.1080/00071668.2023.2246142
6. Chatterjee, R.N., R.P. Sharma, B.L.N. Red-dy, M. Niranjan, Shivaprasad and S.K. Mishra. 2007. Genetic analysis of highly inbred chick-en using RAPD-PCR and immunocompetence. Inter. J. Poult. Sci, 6(12): 967-972. https://doi.org/10.3923/ijps.2007.967.972
7. Chomchuen, K., V Tuntiyasawasdikul, V. Chankitisakul and W. Boonkum. 2022. Genet-ic evaluation of body weights and egg produc-tion traits using a multi-trait animal model and selection index in Thai Native synthetic chick-ens (Kaimook e-san2). Animals,12(3),35. https://doi.org/10.3390/ani12030335
8. Dana, N., Vander E.H Waaij, and J.A.M. Van Arendonk. 2011. Genetic and phenotypic parameter estimates for body weights and egg production in Horro chicken of Ethiopia. Trop. Anim. Health Prod., 43 (1), 21–28. https://doi.org/10.1007/s11250-010-9649-4
9. Douwing, D. K., U.Friberg, and J. Lindeii, 2008. Evoluionary implications of non-neutral mitochondrial genetic variation. Trendsin Cology and Evolution, 23(10): 546_554.
https://doi.org/10.1016/j.tree.2008.05.011
10. Duncan, D.B., 1955. Multiple range and Multiple F-test. Biometrics 11: 4-42.https://www.doi.org/10.2307/3001478
11. Dzungwe, J. T., K. Tozo, C. A. M. Chrys-ostome, R. A. Tankouano, O. E. Oke, and K. Tona. 2024. Effect of crossbreeding on egg quality, incubation, and hatching activities of the pure and reciprocal cross between the Sas-so and Wassache Chickens. Poult. Sci, 103:103406. https://doi.org/10.1016/j.psj.2023.103406
12. Fiorilla, E.; Birolo, M.; Ala, U.; Xiccato, G.; Trocino, A.; Schiavone, A and C. Mugnai,. 2023. Productive performances of slow-growing chicken breeds and their crosses with a commercial strain in conventional and free-range farming systems. Animals. 13, 2540(1-11). https://doi.org/10.3390/ani13152540
13. Funk, S.M., S. Guedaoura, R. Juras, A. Raziq, F. Landolsi, C. Luís, A. Martínez Mar-tínez, M. M. Mayaki, F. Mujica, M. O. Maria, O. S. Yves-Marie, V. P. Jose Luis and C. Ernest Gus .2020. Major inconsistencies of inferred population genetic structure estimated in a large set of domestic horse breeds using mi-crosatellites. Ecol. Evol.10 (4261-4279). https://doi.org/10.1002/ece3.6195
14. Gonzalez-Ariza, A., Arando Arbulu, A., Navas Gonzalez, F.J., Nogales Baena, S., Del-gado Bermejo, J.V., and M.E. Camacho Valle-jo. 2021. The study of growth and perfor-mance in local chicken breeds and varieties: a review of methods and scientific transference. Animals 11, 2492. https://doi.org/10.3390/ani11092492
15. Hailemariam, A.; Esatu, W.; Abegaz, S.; Urge, M.; Assefa, G and T. Dessie. 2023. Ef-fects of crossbreeding on growth, production and selected egg quality traits of improved Horro crosses with Cosmopolitan chickens. J. Agric. Food Res. 14, 100716 https://doi.org/10.3390/ani15030376
16. Hall, B. G.2013. Building phylogenetic trees from molecular data with MEGA. Mol. Bio. Evol., 30(5),1229-1235. https://doi.org/10.1093/molbev/mst012
17. Kanthaswamy, S. 2024. Wildlife forensic genetics—Biological evidence, DNA markers, analytical approaches, and challenges. Anim. Genet. 55, 177–192. https://doi.org/10.1111/age.13390
18. Kossoga ,K. A., G.K. Dayo , A.Bilalissi , O. N’nanle , E. O. Oke and K. A. Tete-Benissan.2023. Genetic diversity and structure of local chicken populations raised in five agroecological zones of Togo. J. W. Poult. Res. 13(3): 352-363 https://dx.doi.org/10.36380/jwpr.2023.38
19. Lawal, R. A., and O. Hanotte. 2021. Do-mestic chicken diversity: origin, distribution, and adaptation.” Animal Genetics 52 (4): 385–394.
http://doi.org/10.1111/age.13091
20. Lyu S, Arends D, Nassar MK, Weigend A, Weigend S, Wang E and G.A.Brockmann. 2023. High-density genotyping reveals candi-date genomic regions for chicken body size in breeds of Asian origin. Poult Sci.;102(1):102303. https://doi.org/10.1016/j.psj.2022.102303
21. Marikar, F. M., and M. M. Mustafa, 2014. Usefulness of short sequence repeat markers in goat genetic diversity studies on the Asian and African continents. Turk. J .Vet Anim .Sci. 38: 606-611.
https://doi.org/10.3906/vet-1402-46
22. Menchetti, L.; Birolo, M.; Mugnai, C.; Mancinelli, A.C.; Xiccato, G.; Trocino and A. C. Castellini. 2024. Effect of genotype and nutritional and environmental challenges on growth curve dynamics of broiler chickens. Poult. Sci., 103:104095.
https://doi.org/10.1016/j.psj.2024.104095
23. Miyumo, S.; Wasike, C.B.; Ilatsia, E.D.; Bennewitz, J and M.G. Chagunda. 2024. Evaluation of selection strategies in dual-purpose and specialized breeding of indige-nous chicken. Poult. Sci. 2024, 103, 103916. https://doi.org/10.1016/j.psj.2024.103916
24. Mokoena, K.; Mbazima, V and T.L. Tyasi. 2024. A literature review on effect of chicken crossbreeding on egg production traits. Worlds Poult. Sci. J., 81(1),151–167 https://doi.org/10.1080/00439339.2024.2443184
25. Ni, A.; Calus, M.P.; Bovenhuis, H.; Yuan, J.; Wang, Y.; Sun, Y and J. Chen. 2023. Ge-netic parameters, reciprocal cross differences, and age-related heterosis of egg-laying per-formance in chickens. Genet. Sel. Evol. 55:87
https://doi.org/10.1186/s12711-023-00862-7
26. Noori, A.A., I.Q. Abdul Kareem and B.G.M. Al-khatib.2019. Fifth exon and partial of exon six polymorphisms of Growth Hor-mone Receptor (GHR) gene and its association with some productive and physiological traits of laying hens. J. Biochem. Cell, Arch., 19(1):1291-1296. https://doi.org/10.35124/bca.2019.19.1.1291
27. Pourhamidi, S.; Esmailizadeh, A.; Salarmoini, M and M.A. Fozi. 2024. Compari-son of productive performance of Marandi, White Leghorn, and Marandi-White Leghorn crossbred chickens. BMC Vet. Res. 20, 460. https://doi.org/10.1186/s12917-024-04314-2
28. Rahim, A., S. Kumar, A. K.Das, J. Debnath, R. Yadav and J. Krishan. 2023. As-sociation of microsatellite genotypes with layer economic traits in a selected strain of Rhode Island Red chicken. Indian J. Anim. Sci, 93 (12): 1193–1198. https://doi.org/10.56093/ijans.v93i12.136591
29. Sahu, A.R., S. Kumar, S.K. Jain and C. Raj. 2022. Association of diversity in mi-crosatellite genotypes with layer traits in Rhode Island Red chicken. Indian J. Anim. Sc., 93 (12): 1193-1198.
https://doi.org/10.56093/ijans.v93i12.136591
30. SAS., 2012. Statistical Analysis System, User's Guide. Statistical. Version 9.1th ed. SAS. Inst. Inc. Cary. N.C. US.
31. Sørensen, P. 1997. The population of lay-ing hens loses important genes: A case history. Animal Genetic Resources Information Bulle-tin(22):71-78.
https://hdl.handle.net/10568/10322
32. Taki, K. 2017. Determination of polymor-phisms in IGF-I and NPY Candidate genes associated with egg yield in pure layers chick-en lines reared in the Ankara Poultry Research Institute. Turkish J. Agric. Food Sci. Technol., 5(9):1051-1056. https://doi.org/10.24925/turjaf.v5i9.1051-1056.1290.
33. Tan, X. Liu R, Zhao D, He Z, Li W, Zheng M, Li Q, Wang Q, Liu D and F. Feng. 2023. Large-scale genomic and transcriptomic anal-yses elucidate the genetic basis of high meat yield in chickens. J. Adv. Res, 55,1-16. https://doi.org/10.1016/j.jare.2023.02.016
34. Thamer M. A., and A. A. Noori. 2022. Use of Microsatellite Marker MCW0330 for Evaluating the Productive Performance of ISA Brown Egg Laying Hens. Indian J. Eco. 49 Special Issue (18): 384-387. https://www.researchgate.net/publication/364107432
35. Wang, J., Lei Q-x, Cao D-g, Zhou Y, Han H-x, Liu W, Li D-p, Li F-w and J. Liu. 2022. Whole genome SNPs among 8 chicken breeds enable identification of genetic signatures that underlie breed features. J. Integr. Agric. https://doi.org/10.1016/j.jia.2022.11.007
36. Wang, J., Liu, J., Lei, Q., Liu, Z., Han, H., Zhang, S., Qi, C., Liu, W., Li, D and F. Li. 2024. Elucidation of the genetic determination of body weight and size in Chinese local chicken breeds by large-scale genomic anal-yses. BMC Genom., 25, 296 https://doi.org/10.1186/s12864-024-10185-6
37. Yacouba, Z., H. Isidore , K.Michel, G.B. Isidore,T. Boureima,M. Vinsoun,K. Maurice, B.Ousseni, Z.Moussa, B-Y.M.C .Valerie, R. Romdhane and N. A. Joseph. 2022. Genetic diversity and population structure of local chicken ecotypes in Burkina Faso using mi-crosatellite markers. Genes, 13: 1523.
https://www.doi.org/10.3390/genes13091523
38. Yacouba, Z., Isidore, G.B., Isidore, H., Michel, K., Boureima, T., Moussa, Z., Samuel, B., Apollinair, T.P., Mahamoudou, Z, R. Romdhane and N.A.Joseph. 2021. Morpho-biometric evaluation of the genetic diversity of local chicken ecotypes in four regions (centre-east, sahel, centre-north and south-west) of Burkina Faso. Int. J. Poult. Sci. 20(6), 231–242.
https://doi.org/10.3923/ijps.2021.231.242
39. Zhang, X., Y. He, W. Zhang, Y. Wang, X. Liu, A. Cui, Y. Gong, J. Lu, X. Liu, X. Huo, J. Lv, M, Guo, X. Du, L. Han, H. Chen, J. Chen, C. Li and Z. Chen. 2021. Develop-ment of microsatellite marker system to deter-mine the genetic diversity of experimental chicken, duck, goose, and pigeon populations. Biomed. Res. Int. 2021:1–14. https://doi.org/10.1155/2021/8851888
40. Zhou, J.; Yu, J.-Z.; Zhu, M.-Y.; Yang, F.-X.; Hao, J.-P.; He, Y.; Zhu, X.-L.; Hou, Z.-C and F. Zhu. 2025. Optimizing Breeding Strat-egies for Pekin Ducks Using Genomic Selec-tion: Genetic Parameter Evaluation and Selec-tion Progress Analysis in Reproductive Traits. Appl. Sci. 2025, 15, 194. https://doi.org/10.3390/app15010194
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.