IMMUNOPATHOLOGICAL CHANGES IN SHEEP EXPERIMENTLY INFCETED WITH MYCOPLASMA OVIPNEUMONIAE BY INTRANASAL AND INTRATRACHEAL ROUTES

Authors

  • Zainab W. Khutair
  • Z. I. Ibrahim
  • F. A. Abdallah

DOI:

https://doi.org/10.36103/5rdbnz96

Keywords:

respiratory infection, gene detection, immunoglobulins, small ruminant.

Abstract

Mycoplasma ovipneumoniae (M. ovipneumoniae) is a type of contagious bacteria have respiratory clinical signs; nasal mucinous discharge, sneezing, coughing, dullness, and in some cases with diarrhea and the necropsy findings represent lesions of pneumonia in different stages; pulmonary edema and hyperemia, consolidation, hemorrhage and hepatization.  that causes atypical pneumonia and pleuropneumonia in small ruminants, it is belongs to a group of bacteria named Mollicutes which characterized by its minute genome size and perpetually devoid of the cell wall. The aim of studies indicates the bacterial, molecular, immunopathological and immunohistochemical investigation in sheep with two experimental routs of infection in two parts. The current isolate of Mycoplasma ovipneumoniae was obtained from respiratory tract swabs of sheep in Basrah abattoir and then cultured in PPLO broth and agar and detected genetically by 16SrRNA and GOP3/MGSO. Nine sheep were divided into G1 and G2 groups inoculated with My. ovipneumoniae 5ml (1X107 CFU/ml) intranasal and intratracheal, G3 control group. IgGs levels on day 30 were high in tow groups. Fibrino-suppurative tracheitis and interstitial bronchopneumonia were prominent in gross appearance. Microscopically: necrosis of ciliated pseudostratified epithelium with inflammatory cells.  It could be concluded that My. ovipneumoniae was a primary causative agent of pleuro-bronchopneumonia in sheep.

References

1. Abdulhadi, B. and J. Kiel, 2023. Mycoplasma Pneumonia.book In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. PMID: 28613531 Bookshelf ID: NBK430780

2.Abed, A.A. 2022. Vaccine Preparation and Molecular Identification of Avian Mycoplasma gallisepticum in Broilers. Ph.D. Disserration. College of Veterinary Medicine. Basra University.

3.AL-Dujaily,A.H. S. A. Abeed, and A. M. Sahib, 2023. Hematological, biochemical, pathological, serology and molecular detection of mycoplasma ovipneumoniae from awassi sheep in al-najaf province, Iraq. Ann. For. Res. 66(1): 1410-1422.

4.Ali,A.J.: Nijres, T. Al. and R. Faraj, 2024. Detection of Mycoplasma gallisepticum and Mycoplasma synoviae in Fertile Eggs by ELISA and Real-Time PCR. The Iraqi Journal of Veterinary Medicine, 48. (2), ISSN: 1609-5693

DOI: https://doi.org/10.30539/0cv6sr30

5.Aljoburi, A.M.H. 2024. Evaluation of the prevalence mycoplasma gallisepticum in broiler farms in samarra city. Iraqi Journal of Agricultural Sciences. 55(5):1620-1626. https://doi.org/10.36103/x11s9m87

6.Carroz, K.P.: Urrutia-Royo,B.: Marin, A.: Laura Rodriguez Pons, L.R.:, Paloma Millán- P.: Billi, A.: Rosell, O. Moran-Mendoza, 2024. Rare interstitial lung diseases: a narrative review, 16, (9). doi: 10.21037/jtd-24-450

7.Castejon-Vega, B.; M.D.; Cordero, and A. Sanz, 2023. How the disruption of mitochondrial redox signalling contributes to ageing. antioxidants 12, 831. DOI:10.3390/antiox12040831

8.Chen, T., R. Wang and W. Jiang. 2022. Protective effect of astragaloside IV against paraquat-induced lung injury in mice by suppressing Rho signaling, Inflammation. 39(1):483–492. DOI: 10.1007/s10753-015-0272-4

9.Cui, X.; Zhang, Y.; Lu, Y.; Xiang, M. ROS and Endoplasmic Reticulum Stress in Pulmonary Disease. Front. Pharmacol. 2022, 13, 879204. DOI: 10.3389/fphar.2022.879204

10.Dayo, O. I.: M. I.: Atanda, A.D.: Sunday, P.A. Raymond, and N.R.. Ashley, 2025. Application of New Sero- Diagnostic Techniques and Molecular Assays to Characterize Recent Mycoplasma Isolates from Ruminants in Nigeria. Vol. 5 No. 1

DOI: https://doi.org/10.56286/6wr0dp97

11.Dudek, K., U. Sevimli, S. Migliore, A. Jafarizadeh, G.R. Loria, A.J. Robin and R.A.J. Nicholas. 2022. Vaccines for mycoplasma diseases of small ruminants A Neglected Area of Research. Pathogens. 11(75):1-12. doi: 10.3390/pathogens11010075

12.El-Gammal, Z.; M.A.; Nasr, A.O.; Elmehrath, R.A.; Salah, S.M.;Saad, and N. El-Badri, Regulation of mitochondrial temperature in health and disease. P. flugers Arch. 474, 1043–1051. DOI: 10.1007/s00424-022-02719-2

13.El-Nagar A.L, Azza S.A. Gouda, Mona A. Mahmoud, Rasha S. Mohammed, Anis Anis Zayed, Salah Sayed El-Ballal. (2024). Histopathological and bacteriological studies on pneumonic lung from one humped camels slaughtered in Egypt. Egyptian J. Camel Sc., 2, No.(2), 73-80 doi: 10.21608/ejcs.2025.265700.1016

14.Gaeta, N.C., A.M. Guimarães, J. Timenetsky, S. Clouser, L. Gregory and E. Ganda. 2022. The first mycoplasma ovipneumoniae recovered from a sheep with respiratory disease in Brazil - draft genome and genomic analysis. Vet. Res. Commun. 46(4):1311-1318. doi.org/10.1007/s11259-022-09972-x

15.Garcıa-Fojeda, B., Minutti, C., Montero-Fernandez, C., Stamme, and C., Casals 2022. Signaling pathways that mediate alveolar macrophage activation by surfactant protein a and IL-4. Front Immunol 13, 860262. doi: 10.3389/fimmu.2022.860262.

16.Garwood, T.J., C.P. Lehman, D.P. Walsh, E.F. Cassirer, T.E. Besser and J.A. Jenks. 2020. Removal of chronic mycoplasma ovipneumoniae carrier ewes eliminate pneumonia in a bighorn sheep population. Ecology and Evolution. (10):3491–3502.

DOI: 10.1002/ece3.6146

17.Hao H, Z, Maksimovic L, Ma M, Rifatbegovic S, Chen X, Yan L, Fu and Y. Chu 2023. Complete genome sequences of Mycoplasma ovipneumoniae strains 150 and 274, isolated from different regions in Bosnia and Herzegovina. Microbiol Resour Announc.12(3). DOI: 10.1128/mra.00011-23

18.Jacobson,B.T.: J.D.: Dibbert, L.: Zanca, S.: Sonar, C.: Hardy, M.:Throolin, P.C.: Brewster, K.: Andujo, K.: Jones, J.: Sago, S.: Smith, L. Bowen, and D. Bimczok, 2025. Pathogen delivery route impacts disease severity in experimental Mycoplasma ovipneumoniae infection of domestic lambs. Veterinary Research. 56, no. 10. DOI: 10.1186/s13567-024-01439-y

19.Johnson, B. M., J., Stroud-Settles, A. Roug, and K. Manlove, 2022. Disease Ecology of a Low-Virulence Mycoplasma ovipneumoniae Strain in a Free-Ranging Desert Bighorn Sheep Population. Animals, 12(8): 1029.

DOI: 10.3390/ani12081029

20.Khan, K.; H.C.; Tran, B.; Mansuroglu, P.; Onsell, S.; Buratti, M.; Schwarzlander, A.; Costa, A.G.;Rasmusson, and O. Van Aken, 2024, Mitochondria-derived reactive oxygen species are the likely primary trigger of mitochondrial retrograde signaling in Arabidopsis. Curr. Biol. 34, 327–342.e324. DOI: 10.1016/j.cub.2023.12.005

21.KHUTAIR, Z.W.: Z.I.: IBRAHIM, F. ALI, and S. HASSO, 2024. Detection of cd83+dendritic cells in respiratory tissue of intratracheal and intraperitoneal experimentally infected sheep with mycoplasma ovipneumoniae by ihc. International Journal of Applied Sciences and Technology ISSN: 2717-8234. http://dx.doi.org/10.47832/2717-8234.20.18

22.Kia'i;N. and T. Bajaj, 2023. Histology, Respiratory Epithelium. StatPearls Copyright © 2025. Bookshelf ID: NBK541061PMID: 31082105.

23.Lakshmi, S.V.: N.V. Kumar, and A. J.Babu, 2020. Isolation and molecular characterization of mycoplasma isolates from pneumonic sheep and goats in andhra Pradesh . Int.J.Curr.Microbiol.App.Sci. 9(9): 1608-1614, https://doi.org/10.20546/ijcmas.2020.909.200

24.Li, J., H. Liu, N. Zhao, J. Wang, Y. Yang and Y. Sun. 2020. Therapeutic effects of recombinant SPLUNC1 on Mycoplasma ovipneumoniae infected argali hybrid sheep. Research in Veterinary Science. 133:174-179. DOI: 10.1016/j.rvsc.2020.09.010

25.Luna, L.G. 1968. Manual of Histological Staining Methods of the Armed Forces Institute of Pathology, 3rd Ed. Mc Graw-Hill. New York.

26.Mahmmoud, E. N., M. A. Hamad, and Z. N. Khudhur, 2022. Detection of Mycoplasma gallisepticum in broiler chickens by PCR. Open Veterinary Journal. 12 (3): 329-334. https:// doi: 10.5455/OVJ. 2022.v12.i3.4

27.Maksimovic Z, Rifatbegovic M, Loria GR, Nicholas RAJ. Mycoplasma ovipneumoniae: a Most Variable Pathogen. Pathogens 2022;11(12).

28.Manlove, K., M. Branan, K. Baker, D. Bradway, E.F. Cassirer, K.L. Marshall, R.S. Miller, S. Sweeney, P.C. Cross and T.E. Besser. 2019. Risk factors and productivity losses associated with Mycoplasma ovipneumoniae infection in United States domestic sheep operations. Prev. Vet. Med. 168:30–38.

29.Mousa, W. S., A. A., Zaghawa, A. M., Elsify, M. A., Nayel, Z. H., Ibrahim, K. A., Al-Kheraije, H.R., Elhalafawy, D., El-Shafey, A. Anis, and A. A. Salama, 2021. Clinical, histopathological, and molecular characterization of Mycoplasma species in sheep and goats in Egypt. Veterinary World, 14(9): 2561.‏

30.Mukherjee, A.: K.K.: Kanta Ghosh, S.: Chakrabortty, B.: Gulyás, P. Padmanabhan, and W.B.Ball, 2024 Mitochondrial Reactive Oxygen Species in Infection and Immunity. Journals Biomolecules Volume 14 Issue 6 doi:10.3390/biom14060670.

31.Okoye, C.N.; S.A.; Koren, and A.P. Wojtovich, 2023, Mitochondrial complex I ROS production and redox signaling in hypoxia. Redox Biol. 67, 102926.

DOI: 10.1016/j.redox.2023.102926

32.Povea-Cabello, S.; M.; Brischigliaro, and E. Fernandez-Vizarra, 2024, Emerging mechanisms in the redox regulation of mitochondrial cytochrome c oxidase assembly and function. Biochem. Soc. Trans. 52, 873–885. DOI: 10.1042/BST20231183

33. Shaker Hassan, A., Khasraw Hassan, and A. Al-Rubeii, 2011. Carcass yield and characteristics of karadi lambs as affected by dietary supplement of rumen undegradable nitrogen fed with Nigella sativa. African Journal of Biotechnology, 10(8):1491–1495.

34.Semmate, N., Z., Zouagui, Z., Elkarhat, Z., Bamouh, S., Fellahi, N., Tligui, and M. Harrak, 2022. Molecular characterization and pathogenicity of mycoplasma capricolum subsp. capricpolum from goats in morocco. Animal Diseases, 2(1). Journal of Agricultural and Veterinary sciences. https://doi.org/10.1186/s44149-022-00042-y.

35.Sies, H.; V.V.; Belousov, N.S.; Chandel, M.J.; Davies, D.P.; Jones, G.E.; Mann, M.P.; Murphy, M.; Yamamoto, and C. Winterbourn, 2022, Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515. DOI: 10.1038/s41580-022-00456-z

36.Waheed, Z.K.: Z.I.: Ibrahim, and F.A. Abdullah, 2022. Pathological and Molecular detection of Mycoplasma ovipneumoneae in Sheep, Basrah Province. Archives of Razi Institute Journal (ARI). Volume 77, Issue 6 - Serial Number 6.

doi 10.22092/ari.2022.357996.2134

37.Xue, D., Y. Z. Li, G. Jiang, M. Deng, X. Li, Liu and Y. Wang. 2017. A ROS-dependent and caspase-3-mediated apoptosis in sheep bronchial epithelial cells in response to mycoplasma ovipneumoniae infections. Vet. Immunol. Immunopathol. 187:55–63.

DOI: 10.1016/j.vetimm.04.004

38.Zhao G, D, Lu M, Li Y. Wang 2023. Gene editing tools for mycoplasmas: references and future directions for efficient genome manipulation. Front Microbiol ;14. doi.org/10.3389/fmicb.2023.1191812

39.Zhao G, DK, Lu SJ, Wang H, Zhang XF, Zhu ZY, Hao A,Dawood YY, Chen E, Schieck CM, Hu et al. 2022. Novel mycoplasma nucleomodulin MbovP475 decreased cell viability by regulating expression of CRYAB and MCF2L2. Virulence.;13(1):1590–613. DOI: 10.1080/21505594.2022.2117762

Downloads

Published

2025-06-28

Issue

Section

Articles

How to Cite

Zainab W. Khutair, Z. I. Ibrahim, & F. A. Abdallah. (2025). IMMUNOPATHOLOGICAL CHANGES IN SHEEP EXPERIMENTLY INFCETED WITH MYCOPLASMA OVIPNEUMONIAE BY INTRANASAL AND INTRATRACHEAL ROUTES. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(3), 1036-1044. https://doi.org/10.36103/5rdbnz96