RELATIONSHIP OF THE FASN GENE POLYMORPHISM WITH MILK PRODUCTION AND ITS COMPONENTS IN LOCAL AWASSI SHEEP
DOI:
https://doi.org/10.36103/vtjmb057Keywords:
Daily milk yield, Lactation period, milk composition.Abstract
This study was conducted to detecting the FASN gene polymorphism and its relationship to daily milk yield (DMY), lactation period, and milk composition in addition to polymorphism distribution and allele frequency in 52 Awassi ewes and their lambs. It was carried out from 5/1/2022 to 30/10/2022 at the Sheep Farm of the Al-Fayhaa station in the Jableh sub-district / Al-Musaib project (55 km south of Baghdad), in addition to the Biotechnology Laboratory at the College of Agricultural Engineering Sciences/University of Baghdad. Three polymorphism appeared in this variant (A>G SNP), which are AA, AG, and GG, with the percentages of 63.46, 32.69, and 3.85%, respectively. The variation among them were highly significant (P≤0.01) with a frequency of 0.70 and 0.30 for alleles G and A, respectively. The protein content of Awassi sheep's milk differ significantly (P≤0.05) at rate 5.17% for ewes with GG polymorphism. In conclusion, FASN gene can be used to develop strategies for genetic improvement of sheep, and expanding the study to a larger sample and multiple sites and study the types of fatty acids in milk, as well as finding the interaction between two SNPs, would give more accurate results and determine the best method for managing and improving sheep flocks.
References
1. Akanalçı, C. and S. Bilici. 2024. Biological clock and circadian rhythm of breast milk composition. Chronobiol. Int., 41(8), 1226-1236. https://doi.org/10.1080/07420528.2024.2381599
2. Al-Juwari, M. F. 2023. The use of test-day milk yield and lambs weight for prediction of some productive traits in Awassi sheep. Iraqi Journal of Agricultural Sciences, 54(4), 1058-1067. https://doi.org/10.36103/ijas.v54i4.1795
3. Almaamory, Y. A. and N. Al-Anbari. 2023. Relationship of FASN Gene Polymorphism in Growth Performance and Wool Traits of Awassi Sheep. IOP Conf. Ser.: Earth Environ. Sci.,1214: 012032. https://doi.org/10.1088/1755-1315/1214/1/012032
4. Aregger, M., K. A. Lawson, M. Billmann, M. Costanzo, A. H. Tong, K. Chan, M. Rahman, K. R. Brown, C. Ross and M. Usaj. 2020. Systematic mapping of genetic interactions for de novo fatty acid synthesis identifies C12orf49 as a regulator of lipid metabolism. Nat. Metab., 2(6), 499-513. https://doi.org/10.1038/s42255-020-0211-z
5. Capistrak, A., M. Margetín, D. Apolen and J. Spanik. 2002. Production and content of basic components in sheep milk of Improved Valachian, Lacaune breeds and their crosses. J. Far. Anim. Sci. (Slovak Republic).
6. Cheng, Y., J. He, B. Zuo and Y. He. 2024. Role of lipid metabolism in hepatocellular carcinoma. Discov. Oncol., 15(1), 206. https://doi.org/10.1007/s12672-024-01069-y
7. Chirala, S. S., H. Chang, M. Matzuk, L. Abu-Elheiga, J. Mao, K. Mahon, M. Finegold and S. J. Wakil. 2003. Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc. Natl. Acad. Sci., 100(11), 6358-6363. https://doi.org/10.1073/pnas.0931394100
8. Duncan, D. B. 1955. Multiple range and multiple F tests. biometrics, 11(1), 1-42.
9. Falconer, D. S. and T. F. C.Mackay. 1996. Introduction to quantitative genetics (4th ed.).Longman, Harlow, UK.
10. Fhu, C. W. and A. Ali. 2020. Fatty acid synthase: an emerging target in cancer. Molecules, 25(17), 3935. https://doi.org/10.3390/molecules25173935
11. Gizaw, S., A. Abebe, S. Goshme, T. Getachew, A. Bisrat, A. Abebe and S. Besufikad. 2022. Evaluating the accuracy of smallholder farmers' sire identification for introducing genetic evaluation in community-based sheep breeding programs. Livest. Sci., 255(104804. https://doi.org/10.1016/j.livsci.2021.104804
12. Hu, H., L. Wang, R. Zhang, M. Tian, S. Zhang, H. Li, C. Cai, J. Yao, J. Wang and Y. Cao. 2025. An overview of the development of perinatal stress-induced fatty liver and therapeutic options in dairy cows. Stress Biol., 5(1), 14.
https://doi.org/10.1007/s44154-024-00206-5
13. Jawasreh, K. and A. Khasawneh. 2007. Genetic evaluation of milk production traits in Awassi sheep in Jordan. Egypt. J. Sheep Goats Sci., 21(1), 83-100.
14. Jawasreh, K. I. and J. E. Alkass. 2023. Genetic and non-genetic parameters for milk production traits of Damascus goat in Jordan. Iraqi Journal of Agricultural Sciences, 54(1), 156-160. https://doi.org/10.36103/ijas.v54i1.1687
15. Kale, D., J. Singh, Y. Sathe and D. Patil. 2021. FASN Gene and Its Role in Bovine milk Production. Int. J. Biotech. Trends Technol., 11(1), 20-25. https://doi.org/10.14445/22490183/IJBTT-V11I1P604
16. Kaushal, S. K., K. Shailesh, S. Brijendra, B. Saurabh, P. Nisha, P. K. Ishan and B. S. Prakash. 2019. Targeting fatty acid synthase protein by molecular docking studies of naturally occurring ganoderic acid analogues acting as anti-obesity molecule. Res. J. Biotechnol., 14,7.
17. Kumar, A., P. Rama and H. H. Katkar. 2024. Unraveling structural disparities in human and mycobacterium tuberculosis type-I fatty acid synthase. bioRxiv, 07. 17.603935. https://doi.org/10.1101/2024.07.17.603935
18. Menendez, J. A., E. Cuyas, J. A. Encinar, T. Vander Steen, S. Verdura, À. Llop‐Hernández, J. López, E. Serrano‐Hervás, S. Osuna and B. Martin‐Castillo. 2024. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol. Oncol., 18(3), 479-516.
https://doi.org/10.1002/1878-0261.13582
19. Naeemah, A. and N. Al-Anbari. 2023. Relationship between SCD1 gene polymorphism and the production and composition of Milk in the Iraqi Awassi sheep. Arch. Razi Inst., 78(1), 45-52.
20. Naeemah, A. G. and N. N. Al-Anbari. 2022. FASN gene polymorphism and its relationship with milk yield and Composition in the Iraqi Awassi sheep. J. Kerbala Agric. Sci., 9(2), 34-45. https://doi.org/10.59658/jkas.v9i2.960
21. Obeidat, B. S. and R. Ababneh. 2025. Effects of feeding olive leaves on lactating performance of Awassi ewes. Iraqi Journal of Agricultural Sciences, 56(1), 402-411. https://doi.org/10.36103/xzge8549
22. Pecka-Kiełb, E., I. Kowalewska-Łuczak, E. Czerniawska-Piątkowska and B. Króliczewska. 2021. FASN, SCD1 and ANXA9 gene polymorphism as genetic predictors of the fatty acid profile of sheep milk. Sci. Rep., 11(1), 1-11. https://doi.org/10.1038/s41598-021-03186-y
23. Reis, L. G., V. L. de Azevedo Ruiz, S. M. Massami Kitamura, A. Furugen Cesar Andrade, F. de Oliveira Bussiman, M. Daiana Poleti, J. Coelho da Silveira, H. Fukumasu, L. H. Faccioli and C. M. Marzocchi-Machado. 2024. Feeding sows milk biofortified with n-6 and n-3 modulates immune status of sows and drives positive transgenerational effects. PloS One, 19(8), e0306707. https://doi.org/10.1371/journal.pone.0306707
24. Riaz, F., J. Zhang and F. Pan. 2024. Forces at play: exploring factors affecting the cancer metastasis. Front. Immunol., 15,1274474. https://doi.org/10.3389/fimmu.2024.1274474
25. SAS 2018. Statistical Analysis System, User's Guide. Statistical. Version 9.4th ed. SAS. Inst. Inc. Cary. N.C. USA.
26. Schultz, K., P. Costa-Pinheiro, L. Gardner, L. V. Pinheiro, J. Ramirez-Solis, S. M. Gardner, K. E. Wellen and R. Marmorstein. 2025. Snapshots of acyl carrier protein shuttling in human fatty acid synthase. Nature, 1-9.
https://doi.org/10.1038/s41586-025-08587-x
27. Suburu, J., L. Shi, J. Wu, S. Wang, M. Samuel, M. J. Thomas, N. D. Kock, G. Yang, S. Kridel and Y. Q. Chen. 2014. Fatty acid synthase is required for mammary gland development and milk production during lactation. Am. J. Physiol. Endocrinol. Metab., 306(10), 1132 -1143. https://doi.org/10.1152/ajpendo.00514.2013
28. Terry, A. R. and N. Hay. 2024. Emerging targets in lipid metabolism for cancer therapy. Trends Pharmacol. Sci., 45(6), 537-551. https://doi.org/10.1016/j.tips.2024.04.007
29. Tian, L., G. Chi, S. Lin, X. Ling and N. He. 2024. Marine microorganisms: natural factories for polyunsaturated fatty acid production. Blue Biotechnol., 1(1), 15. https://doi.org/10.1186/s44315-024-00012-8
30. Wang, Y., J. Jia, F. Wang, Y. Fang, Y. Yang, Q. Zhou, W. Yuan, X. Gu, J. Hu and S. Yang. 2024. Pre-metastatic niche: formation, characteristics and therapeutic implication. Sig. Transduct. Target. Ther., 9(1), 236. https://doi.org/10.1038/s41392-024-01937-7
31. Wang, Y., J. Wu, H. Zhang, X. Yang, R. Gu, Y. Liu and R. Wu. 2024. Comprehensive review of milk fat globule membrane proteins across mammals and lactation periods in health and disease. Crit. Rev. Food Sci. Nutr., 1-22. https://doi.org/10.1080/10408398.2024.2387763
32. Wu, K. and F. Lin. 2024. Lipid metabolism as a potential target of liver cancer. J. Hepatocell. Carcinoma, 327-346. https://doi.org/10.2147/JHC.S450423
33. Xiao, Y., M. Hassani, M. B. Moghaddam, A. Fazilat, M. Ojarudi and M. Valilo. 2025. Contribution of tumor microenvironment (TME) to tumor apoptosis, angiogenesis, metastasis, and drug resistance. Medical Oncology, 42(4), 1-14. https://doi.org/10.1007/s12032-025-02675-8
34. Xiao, Y., Y. Yang, H. Xiong and G. Dong. 2024. The implications of FASN in immune cell biology and related diseases. Cell Death Dis., 15(1), 88. https://doi.org/10.1038/s41419-024-06463-6
35. Zhang, J., Y. Song, Q. Shi and L. Fu. 2021. Research progress on FASN and MGLL in the regulation of abnormal lipid metabolism and the relationship between tumor invasion and metastasis. Front. Med., 15(5), 649-656. https://doi.org/10.1007/s11684-021-0830-0
36. Zhang, Y., Z. Yang, Y. Liu, J. Pei, R. Li and Y. Yang. 2025. Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment. Lipids Health Dis., 24(1), 12. https://doi.org/10.1186/s12944-024-02426-0
37. Zhao, L., F. Li, T. Liu, L. Yuan, X. Zhang, D. Zhang, X. Li, Y. Zhang, Y. Zhao and Q. Song. 2022. Ovine ELOVL5 and FASN genes polymorphisms and their correlations with sheep tail fat deposition. Gene, 807,145954. https://doi.org/10.1016/j.gene.2021.145954
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.