SPATIAL MAPPING AND ASSESSMENT OF SOIL ERODIBILITY USING GIS IN THE MIDDLE OF ERBIL PROVINCE

Authors

  • D. R. Keya
  • H. O. Salih
  • A.E. P. Hayder
  • A. O. Mawlood

DOI:

https://doi.org/10.36103/ahbk0k27

Keywords:

soil erosion, soil erodibility, erodibility assessment, erodibility mapping.

Abstract

This study aimed to estimate soil erodibility in the middle of Erbil province. The results of indirect methods were compared with the observed K-factor in order to determine the most suitable method. The tests were carried out for nine soil locations by taking samples from topsoil. Samples were analyzed for physicochemical properties. The soil in study area is mostly clay and silt clay. The analysis was performed using three assessment models of soil erodibility; the Erosion Productivity Impact Calculator (EPIC), Vaezi et al and Universal Soil Loss Equation (USLE) models. Soil erodibility for direct measured K values varied from 0.27 to 0.39 t h MJ−1mm−1 with standard deviation of 0.041 t h MJ−1mm−1. The statistical evaluation of the models for K-factor estimation showed that the EPIC and USLE nomograph models were the most suitable models for the studied area.

References

1. Allison, L.E. 1965. Organic carbon. In: Black C.A., Ed., Methods of Soil Analysis, ASA-CSSA-SSSA, Madison, 1367-1389.

2. Ayalew, Dawit A., Detlef Deumlich, Bořivoj Šarapatka, and Daniel Doktor. 2020. "Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction using Spaceborne Earth Observation Data" Remote Sensing 12, 7: 1136. https://doi.org/10.3390/rs12071136

3. Al- Jaff, B.O. 2024. Using Center of Gravity Equation for Mica and Smectite in Evaluation of K-status in Some Soils of Iraqi Kurdistan Region. Iraqi Journal of Agricultural Sciences, 55(3), 1110-1119. https://doi.org/10.36103/w953r397

4. Blanco, H. and R., Lal. 2008. Principles of Soil Conservation and Management. Springer, New York.

https://doi.org/10.1007/978-1-4020-8709-7

5. Bonilla, C. A. and O. I., Johnson. 2012. Soil Erodibility Mapping and Its Correlation with Soil Properties in Central Chile. Geoderma. 189-190, 116-123. https://doi.org/10.1016/j.geoderma.2012.05.005

6. Brady, N. C. and R. R., Weil. 2008. The nature and properties of soils. 14th ed. Prentice Hall, Upper Saddle River. N. J.

7. Buringh, P. 1960. Soils and Soil Conditions of Iraq. Ministryof Agriculture, Agricultural Research and Projects, Baghdad.

8. Chen, L.; X., Qian and Y., Shi. 2011. Critical Area Identification of Potential Soil Loss in a Typical Watershed of the Three Gorges Reservoir Region. Water. Resour. Manage. 25, 3445–3463. https://doi.org/10.1007/s11269-011-9864-4

9. Dennis C Flanagan, James R. Frankenberger, Chris S. Renschler, Chris B. Coreil, Jr., Olaf David, Anurag Srivastava, Sadia A. Jame, Ryan P. McGehee. 2024. Water Erosion Prediction Project (WEPP) Model 2024 Status. American Society of Agricultural and Biological Engineers. Paper Number: 2400678. https://doi.org/10.13031/aim.202400678

10. Dwivedi, R. S. 2001. Soil resources mapping: a remote sensing perspective. Remote Sensing Reviews 20: 89-122. https://doi.org/10.1080/02757250109532430

11. El Jazouli A, A. Barakat, A. Ghafiri, S. El Moutaki, A. Ettaqy, and R.Khellouk, 2017. Soil erosion modeled with USLE, GIS, and remote sensing: A case study of Ikkour watershed in Middle Atlas (Morocco). Geosci. Lett. 2017, 4, 25. https://doi.org/10.1186/s40562-017-0091-6

12.review of visual soil evaluation techniques for soil structure. Soil Use and 465 Management 32, 623-634. https://doi.org/10.1111/sum.12300

13. Fayyadh, M. A., and H. A. S. Razvanchy. 2023. Study soil development and classification in erbil province, kurdistan, iraq using mathematical indices. Iraqi Journal of Agricultural Sciences, 54(6), 1802-1813. https://doi.org/10.36103/ijas.v54i6.1879

14. Haotian Z.; L., Wang; S., Yu; J., Zhao and Z., Shi. 2015. Identifying government's and farmers' roles in soil erosion management in a rural area of southern China with social network analysis. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.123499

15. Huang, C. H. and J. M. Bradford. 1993. Analyses of slope and runoff factors based on the WEPP erosion model. Soil Science Society of America Journal. 57 (5), 1176–1183. https://doi.org/10.2136/sssaj1993.03615995005700050002x

16. Hussien, K. S. 2016. Conservation Planning For Bastora Catchment Based on Detection of Erosion Risk Prone Areas. A Thesis Submitted to the Council of the College of Agriculture at Salahaddin University-Erbil in partial fulfillment of the requirements for the degree of M.Sc. of Science in Soil Conservation.

17. Jing, K.; W. Z., Wang and F. L., Zheng. 2005. Soil erosion and environment in China. Beijing: Science Press. Google Scholar

18. Kamphorst, A. 1987. A small rainfall simulator for the determination of soil erodibility. Netherlands Journal of Agricultural Science. 35: 407-415. https://doi.org/10.18174/njas.v35i3.16735

19. Keya, D. R. (2020). Building Models to Estimate Rainfall Erosivity ‎Factor from Rainfall Depth in Iraqi Kurdistan ‎Region. A Dissertation Submitted to the Council of the College of Agricultural ‎Engineering Sciences at Salahaddin University-Erbil in ‎Partial Fulfillment of the Requirements for the Degree of ‎Ph.D. in Soil Science (Soil and Water Conservation)‎. http://dx.doi.org/10.13140/RG.2.2.33806.38726/1

20. Keya, D. R. and T. H., Karim. 2020. Simulation of Rainfall Intensity and Slope Gradient to Determination the Soil Runoff Coefficient at Microplot Scale. Polytechnic Journal, 10(1), 12-17. https://doi.org/10.25156/ptj.v10n1y2020.pp12-17

21. Marques, M. J.; A., Alvarez; C., Pilar; S., Blanca and B. Ramón. 2020. The use of remote sensing to detect the consequences of erosion in gypsiferous soils. International Soil and Water Conservation Research. V. 8, Issue 4, P: 383-392. 10.1016/j.iswcr.2020.10.001

22. McBratney, A. B.; M. L. M., Santos and B., Minasny. 2003. On Digital Soil Mapping. Geoderma 117 (1-2): 3-52. https://doi.org/10.1016/S0016-7061(03)00223-4

23. Mhaske, S. N.; P., Khanindra and B., Arnab. 2019. A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena 172, 408–420. https://doi.org/10.1016/j.catena.2018.08.039

24. Morgan, R. P. C. 2005. Soil erosion and conservation. 3rd ed. Carlton: Blackwell Publishing. https://doi.org/10.1111/j.1365-2389.2005.0756f.x

25. Moss, A. J. and P. H., Walker. 1978. Particle transport by continental water flows in relation to erosion, deposition, soils, and human activities. Sediment Geol.; 20, 81–139. https://doi.org/10.1016/0037-0738(78)90052-0

26. Pan, C., Shangguan, Z. and Lei, T. 2006. Influences of grass and moss on runoff and sediment yield on sloped loess surfaces under simulated rainfall. Hydrol. Process., 20: 3815-3824. https://doi.org/10.1002/hyp.6158

27. Panagos, P.; K., Meusburger; C., Ballabio; P., Borrelli and C., Alewell. 2014. Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Enivron 479–480:189–200. https://doi.org/10.1016/j.scitotenv.2014.02.010

28. Renard, K. G.; G. R., Foster; G. A.,Weesies and J. P., Porter. 1991. RUSLE: Revised Universal Soil Loss Equation. J. Soil water conserv. 46 (1) 30-33. https://www.tucson.ars.ag.gov/unit/publications/pdffiles/775.pdf

29. Renard, K.; G., Foster; G., Weesies; D., McCool and D., Yoder. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation. US Department of Agriculture, Agriculture Handbook No.703USDA, USDA, Washington DC. https://www.tucson.ars.ag.gov/unit/publications/PDFfiles/717.pdf

30. Reusing, M.; T., Schneider and U., Ammer. 2000. Modeling soil loss rates in the Ethiopian Highlands by integration of high-resolution MOMS-02/D2-stereo-data in a GIS. International Journal of Remote Sensing 21 (9): 1885-1896. https://doi.org/10.1080/014311600209797

31. Rowntree, K. M. 1982. Rainfall erosivity in Kenya-some preliminary considerations. In: Thomas, D. B., Senga, W. M.(Eds.). Proceedings of the Second National Workshop on Soil and Water Conservation in Kenya. Institute for DevelopmentStudies and Faculty of Agriculture, University of Nairobi, Kenya,1–19.

32. Sadeghi, S. H. R. 2004. Efficacy of annual soil erosion models for storm-wise sediment prediction, Iran. International Journal of Agricultural Engineers. 13 (1&2), 1–14. Google Scholar

33. Sharma, K. D., and S., Singh. 1995. Satellite remote sensing for soil erosion modeling using the ANSWERS model. Hydrological Sciences Journal 40 (2): 259-272. https://doi.org/10.1080/02626669509491408

34. Tejada, M. and J. L., Gonzalez. 2006. The Relationships Between Erodibility and Erosion in a Soil Treated with Two Organic Amendments. Soil and Tillage Research, 91, 186-198. http://dx.doi.org/10.1016/j.still.2005.12.003

35. Udo, E. J.; T. O., Ogunwale; A. O., Ano and I. E., Esu. 2009. Manual of soil, plant and water analysis. Sibon Books Publishers Ltd., Nigeria.

36. Vaezi, A. R.; S. H. R., Sadeghi; H. G., Bahrami and M. H., Mahdian. 2008. Modeling the USLE K-factor for calcareous soils in northwestern Iran. Geomorphology 97, 414–423, 2008. http://dx.doi.org/10.1016/j.geomorph.2007.08.017

37. Wang, F.; X., Mu; R., Hessel; W., Zhang; C., Ritsema and R., Li. 2013. Runoff and sediment load of the Yan River, China:

changes over the last 60 yr. Hydrol. Earth Syst. Sci. Discuss., 10, 1213–124. https://doi.org/10.5194/hess-17-2515-2013

38. Wang, G.; G., Gertner; S., Fang and A. B., Anderson. 2003. Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slope map. Photogrammetric Engineering and Remote Sensing 69 (8): 889-898. http://dx.doi.org/10.14358/PERS.69.8.889

39. Wang, G.; G., Gertner; X., Liu and A., Anderson. 2001. Uncertainty Assessment of Soil Erodibility Factor for Revised Universal Soil Loss Equation. Catena, 46, 1-14. http://dx.doi.org/10.1016/S0341-8162(01)00158-8

40. Williams, J. R., Renard, K. G., & Dyke, P. T. 1983. EPIC: A new method for assessing erosion’s effect on soil productivity. Journal of Soil and Water Conservation, 38(5), 381–383. https://doi.org/10.1080/00224561.1983.12436327

41. Wischmeier W. H.; C.B., Johnson and B.V., Cross. 1971. A soil erodibility nomograph for farmland and construction sites J. Soil and Water Conserv. 26 (5), pp. 189-193.

https://agris.fao.org/agris-search/search.do?recordID=US201302239293

42. Wischmeier, W. H. and D. D., Smith. 1978. Predicting rainfall-erosion losses: A guide to conservation planning. Agricultural Handbook No. 537. US Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/AH_537%20Predicting%20Rainfall%20Soil%20Losses.pdf

43. Zhang, Z.G.; B.E., Fan; W.J., Baiand and J.Y., Jiao. 2007. Soil Anti-Erodibility of Plant Communities on the Removal Lands in Hilly-Gully Region of the Loess Plateau. Science Soil Water Conserve, 5, 7-13.

DOI 10.13287 / j.1001-9332.201601.016

Downloads

Published

2025-04-24

Issue

Section

Articles

How to Cite

D. R. Keya, H. O. Salih, A.E. P. Hayder, & A. O. Mawlood. (2025). SPATIAL MAPPING AND ASSESSMENT OF SOIL ERODIBILITY USING GIS IN THE MIDDLE OF ERBIL PROVINCE . IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(2), 827-837. https://doi.org/10.36103/ahbk0k27