BIOACTIVITY OF STREPTOMYCES AGAINST COLISTIN RESISTANT K. PNEUMONIAE ISOLATED FROM DIFFERENT CLINICAL SAMPLES
DOI:
https://doi.org/10.36103/46d38432Keywords:
soil; ESBLs; carbapenem; S. azureus; new, inhibitoryAbstract
This study was aimed to find a hopeful antibacterial product from Streptomyces spp. acts against colistin-resistant Klebsiella pneumoniae isolated from different clinical samples. Among 46 K. pneumoniae isolates, 4 (8.7%) isolates represented Colistin resistance using the disc diffusion method and minimum inhibitory concentration. Out of 20 soil samples collected from different gardens at Essaouira city, 18 Streptomyces spp. were isolated and identified. The bioactivity of each Streptomyces isolate was checked against antibiotic-resistant pneumococci. The result showed that only six isolates had high antibacterial activity, 3 isolates with moderate activity, 7 isolates with weak activity, and two with no activity. PCR and DNA sequencing of 16s rDNA was done for the highest active Streptomyces spp. isolate, the result showed 96% identity to Streptomyces azureus.
References
1. Al-Hasani, H. H. M.; Al-Rubaye, D. S.; Alyaa, A. (2024). Prevalence of Extended-Spectrum ß-Lactamases (ESBLs) and AmpC ß-Lactamases in Clinical Isolates of Multiple Drug-Resistant Escherichia coli. Iraqi Journal of Science, 65(7), 3701-3715.
https://doi.org/10.24996/ijs.2024.65.7.12.
2. Abdelaziz, R.; Tartor, Y. H.; Barakat, A. B.; EL-Didamony, G.; Gado, M. M.; Berbecea, A. and Radulov, H. I. 2023. Bioactive metabolites of Streptomyces misakiensis display broad-spectrum antimicrobial activity against multidrug-resistant bacteria and fungi. Front. Cell. Infect. Microbiol. 13:1162721.
doi: 10.3389/fcimb.2023.1162721.
3. Al-Rubaye, D. S. 2016. Phylogenetic analysis of Streptomyces spp. Exhibited different antimicrobial activities. Iraqi Journal of Science, 57 (1B), 397-403. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/9201.
4. Al-rubaye, S. T.; H. M. Risan; D. Al- rubaye and R. Omran 2018. Identification and in vitro antimicrobial activity of marine Streptomyces spp. bacteria from Tigris River sediments in Baghdad city. World Journal of Pharmaceutical and Life Sciences. 4 (10): 120-134. https://www.wjpls.org/admin/assets/article_issue/31092018/1538631560.pdf.
5. Al-Sajad M. S., and H.A.A. Alsalim. 2024. Detection of genes responsible for heavy metals resistance in locally isolated pseudomonas spp. Iraqi Journal of Agricultural Sciences, 55(1), 361-370. https://doi.org/10.36103/wgz9vb91
6. AL-Tameemi, A. I.; M. J.Masarudin,; R.A. Rahim, V. Timms, B. Neilan, and N.M. Isa. 2023. Antibacterial properties of zinc oxide nanoparticles synthesized by the supernatant of weissella confusa upm22mt04. Iraqi Journal of Agricultural Sciences, 54(5), 1209- 1222. https://doi.org/10.36103/ijas.v54i5.1816
7. Alyamani, E. J.; A.M. Khiyami; R.Y. Booq; M. A. Majrashi; F. S. Bahwerth and E. Rechkina 2017. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Ann Clin Microbiol Antimicrob.16 (1):1. Doi: 10.1186/s12941-016-0177-6.
8. Arciola, C. R.; D. Campoccia; Y. H. An; L. Baldassam; V. Pirini; M. E. Donati; F. Pegreddi and L. Montanaro. 2006. Prevalence and antibiotic resistance of 15 minor Staphylococcal species colonizing orthopedic implants. The International Journal of Artificial Organs. 29 (4):395-401. Doi:10.1177/039139880602900409.
9. ATIF, M.; D.S.AL-Rubaye, and H. R. Al-Hraishawi. 2023. Plasmid profiling of extended spectrum β-lactamases producing escherichia coli in some hospitals in Baghdad. Iraqi Journal of Agricultural Sciences, 54(2), 360-368.
https://doi.org/10.36103/ijas.v54i2.1710
10. Bailly C. 2022. The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties, and applications. European Journal of Pharmacology. 5; 914:174661. Doi: 10.1016/j.ejphar.2021.174661.
11. Balasubramanian, B.; N. Benit; P. Agastian; K.S. Almaary; T.M. Dawoud; Y.B. Elbadawi; A. Mubarak; M.S. Alfadul and R. M. Aljowaie 2021. Carbapenemases producing Klebsiella pneumoniae from the pus of hospitalized patients: In-vitro antibiotic properties of Streptomyces against multidrug-resistant infectious bacteria. Journal of Infection and Public Health. 14 (7):892-897.
DOI: 10.1016/j.jiph.2021.05.006.
12. Barrios, H.; U. Garza-Ramos; I. Mejia-Miranda; F. Reyna-Flores; A. Sánchez-Pérez; D. Mosqueda-García and J. Silva-Sanchez 2017. Bacterial resistance consortium. ESBL-producing Escherichia coli and Klebsiella pneumoniae: The most prevalent clinical isolates obtained between 2005 and 2012 in Mexico. J Glob Antimicrob Resist. 10:243-246.
DOI: 10.1016/j.jgar.2017.06.008
13. Bassam, Q. and M. Risan. 2021. Screening of bacteria Streptomyces waksman and henrici 1943 (Streptomycetaceae) isolates from soil samples in Iraq. Inter. J Adv Biolol and Biomed Res .9 (4): 340-351.
https://doi.org/10.22034/ijabbr.2021.534456.1364.
14. Bennett, J.A.; G.V. Kandell; S. G. Kirk and J. R. McCormick 2018. Visual and microscopic evaluation of Streptomyces developmental mutants. J Vis Exp. 12 (139):57373. Doi: 10.3791/57373.
15. Clinical and Laboratory Standard Institute, Supplement, Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2018. M100-S28 Performance Standards for Antimicrobial Susceptibility Testing: 28th ed. https://www.scirp.org/reference/referencespapers?referenceid=3501341.
16. Daniel, T. A.; A. Benjamin; K. A. Jones; Jesse; T. J. Mary; E.S. Zanthia; C. D. William; L. Benjamin and S. Sujit. 2022. Efficacy of noncarbapenem β-Lactams compared to carbapenems for extended-spectrum β-Lactamase -producing enterobacterales urinary tract infections, Open Forum Infect Dis, 9 (3): ofac034.
DOI: 10.1093/ofid/ofac034.
17. Deshmukh, M. B. and K. R. Sridhar. 2002. Distribution and antimicrobial activity of +actinomycetes of a fresh water coastal stream. Asian J Microbiol Biotech Environ Sci, 4: 335–340. https://www.researchgate.net/publication/267447863_Distribution_and_antimicrobial_activity_of_actinomycetes_of_a_freshwater_coastal_stream.
18. Dhanasekaran, D.; N. Thajuddin and A. Panneerselvam. 2009. Distribution and ecobiology of antagonistic Streptomycetes from agriculture and coastal soil in tamil nadu, India. J. Cult Collec. 6:10-20. https://www.bioline.org.br/pdf?cc09002.
19. Faiza, N.; I. Iqbal; N. Ikram; M. Shoaib; A. M. Javaid; R.T. Mehmood; A. Niazi; A. Anam and B. Ishfaq 2017. Phenotypic cofirmatory disc diffusion test (PCDDT), double disc synergy test (DDST), E-test OS diagnostic tool for detection of extended spectrum beta lactamase (ESBL) producing Uropathogens. J Appl Biotechnol Bioeng, (3): 344–49. DOI: 10.15406/jabb.2017.03.00068.
20. Kemung, H. M, L. T Tan, T. M. Khan, K. Chan, P. Pusparajah, B. Goh, and L Lee. 2018. Streptomyces as a prominent resource of future anti-MRSA drugs. Frontiers in microbiology, 9, 2221. https://doi.org/10.3389/fmicb.2018.02221
https://doi.org/10.36103/ijas.v49i5.50.
21. Kadum, S. M. and D. Al-rubaye. 2019. Colistin susceptibility in carbapenem resistant Klebsiella pneumoniae and their ability of biofilm formation. Iraqi Journal of Science. 2020:517-27. DOI: https://doi.org/10.24996/ijs.2020.61.3.7
22. Karki, D.; B. Dhungel; S. Bhandari; A. Kunwar; P.R. Joshi; B. Shrestha; K. R. Rijal; P. Ghimire and MR. Banjara 2021. Antibiotic resistance and detection of plasmid mediated colistin resistance mcr-1 gene among Escherichia coli and Klebsiella pneumoniae isolated from clinical samples. Gut Pathog. (5): 13 (1):45. doi: 10.1186/s13099-021-00441-5.
23. Kwok, J.M.; S.S. Myatt; C.M. Marson; R.C. Coombes; D. Constantinidou and E.W. Lam 2008. Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol. Cancer Ther. 7 (7): 2022–32.
DOI: 10.1158/1535-7163.MCT-08-0188.
24. Laura, J. R.; S. Madiha; C. Eric; S. R. Sandra; P. Federico; A. S. Robert; C. K. Robert; R. W. Richard; M. Steve; D. R. Susan; D.T. Nicholas; M. H. Andrea; M. H. Kristine; D. Yohei; S. K. Keith; E. Scott; G. F. Vance; Jr; A. B. Robert and van D. David. 2017. For the Antibacterial Resistance Leadership Group, Colistin Resistance in Carbapenem-Resistant Klebsiella pneumoniae: Laboratory Detection and Impact on Mortality, Clin Infec Dis, 64 (6):711–718.
https://doi.org/10.1093/cid/ciw805
25. MacFadden, J. F. 2000. Biochemical Tests for Identification of Medical Bacteria 3rd ed. The Williams and Wilkins Co., USA, 689-691. https://lib.ugent.be/catalog/rug01:000694128
26. Maiti, P.K.; S. Das; P. Sahoo and M. Sukhendu 2020. Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Sci Rep. 10, 10092.
DOI:10.1038/s41598-020-66984-w.
27. Mariana, C.; J. S. Patricia and A. B. Patricia 2021. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection, JAC-antimicrobial resistance, 3 (3): dlab092. DOI: 10.1093/jacamr/dlab092.
28. Medina-Pizzali, M. L.; A. Venkatesh; M. Riveros; D. Cuicapuza; G. Salmon-Mulanovich; D. Mäusezahl and S.M. Hartinger. 2022. Whole-Genome Characterisation of ESBL-Producing E. coli isolated from drinking water and dog faeces from rural andean Households in Peru. Antibiotics. 11(5):692.
doi: 10.3390/antibiotics11050692.
29. Mustafa, M. G.; M. A. El-Mahdy and F. B. Rasha. 2017. Association between virulence factors and extended-spectrum beta-lactamase producing Klebsiella pneumoniae compared to nonproducing isolates, Interdiscip Perspect Infect
Dis., vol. 2017, Article ID 7279830, 14 pages.
doi: 10.1155/2017/7279830.
30. Nassar, M.S.M.; W.A. Hazzah and W.M.K. Bakr. 2019. Evaluation of antibiotic susceptibility test results: how guilty a laboratory could be?. J. Egypt. Public. Health. Assoc. 94, 4. doi: 10.1186/s42506-018-0006-1.
31. Quan, J.; D. Zhao; L. Liu; Y. Chen; J. Zhou; Y. Jiang; X. Du; Z. Zhou; M. Akova and Y. Yu. 2017. High prevalence of ESBL-producing Escherichia coli and Klebsiella pneumoniae in community-onset bloodstream infections in China. J Antimicrob Chemother.72 (1):273-280.
doi: 10.1093/jac/dkw372.
32. Shaikh, S.; J. Fatima; S. Shakil; S.M. Rizvi and M. A. Kamal. 2015. Risk factors for acquisition of extended spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae in North-Indian hospitals. Saudi J. Biol. Sci, 22(1), 37–41. doi: 10.1016/j.sjbs.2014.05.006.
33. Sharma, S.; T. Banerjee; A. Kumar; G. Yadav and S. Basu. 2022. Extensive outbreak of colistin resistant, carbapenemase (blaOXA-48, blaNDM) producing Klebsiella pneumoniae in a large tertiary care hospital, India. Antimicrob Resist Infect Control. 6;11 (1):1. doi: 10.1186/s13756-021-01048-w.
34. Tania, N. D.; E. Azar; C.Al-Bayssari; S. C. Amanda and Jean-Marc Rolain 2019. First Detection of colistin-resistant Klebsiella pneumoniae in association with NDM-5 carbapenemase isolated from clinical Lebanese patients. Microb Drug Resis. pp: 925-930. doi: 10.1089/mdr.2018.0383.
35. Walter, J. D.; M. Hunter; M. Cobb; G. Traeger and P. C. Spiegel. 2012. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor 4. Nucleic Acids Res. 40 (1):360-70. doi: 10.1093/nar/gkr623.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.