MOLECULAR AND PHENOTYPIC CHARACTERIZATION OF EFFLUX PUMPS AND EFFLUX PUMPS INHIBITOR ON ANTIBIOTIC RESISTANCE OF SALMONELLA TYPHI IN BAGHDAD
DOI:
https://doi.org/10.36103/sd55gt91Keywords:
enterobacteriace, fluphenazine decanoate, ethidium bromide, flic-d gene.Abstract
The aim of the study was investigate the occurrence of multidrug resistance efflux pumps genes in local clinical isolates of Salmonella sp and try to apply efflux inhibitor for phenotypic detection besides their possibly future therapeutic uses to retain the activity of some frequently used antibiotics. Among 114 bacterial specimens obtained from several hospitals in Baghdad city only 67 isolates were diagnosed to Salmonella typhi according to conventional and molecular methods. The disk diffusion (Kirby Bauer) method was adopted to assess the antibiotic susceptibility of S. typhi isolates, and the results revealed variable rates of resistance to various antibiotics. While Gentamicin are the most effective antibiotic in this study since 100% sensitive to it .Cartwheel method used for evaluating the efflux pumps activity by using ethidium bromide in different concentration, the outcomes appeared positive reaction for 42 isolates (62.6%) at 0.25 µg/ml, 25(37.3%) at 0.5 µg/ml , 15(22.3%) at 1 µg/ml , 9(13.4%) at 1.5 µg/ml , 4 (5.9%) at 2 µg/ml, 4(5.9%) at 4µg/ml. Four isolates which characterized highly expression level of efflux pumps activity and high resistant to antibiotic were selected to confirmed the result of cartwheel assay through determining the minimum inhibitory concentration (MIC) level though applied different concentration (500, 250, 125, 62.5, 31.25, 15.62, 7.8, 3.9, and 1.9) µg/ml of fluphenazine decanoate as efflux pump inhibitor (EPIs) and appeared at 15.62 µg/ml of EPIs the positive activity efflux pumps became negative and Etbr appeared fluorescent.
References
1. AL-Quraishi, Z. H. O., and P. H. AL-Amm. 2018. Genotypic study of some virulence factors in Salmonella typhi carrier associated with gall bladder chronic infection. International Journal of Pharmaceutical Quality Assurance: 9(2);132-137. http://dx.doi.org/10.25258/ijpqa.v9i2.13635
2. Altınöz, E., and E. M. Altuner, 2022. Observing the presence of efflux pump activities in some clinically isolated bacterial strains. International Journal of Biology and Chemistry, 15(1), 48-54. http://dx.doi.org/10.26577/ijbch.2022.v15.i1.05
3. Amaral L, A Martins, G Spengler and J. Molnar .2014. Efflux pumps of gram-negative bacteria: what they do, how they do it, with what and how to deal with them. Front Pharmacol.4:168. https://doi.org/10.3389/fphar.2013.00168
4. Bauer HL, WM Kirby, JC Sherris and M Jurok. 1966. Antibiotic susceptibility testing by a standard single disc diffusion method . Amer. J. Clin. Pathol.45(4): 493-496. https://doi.org/10.1128/aac.1.6.451
5. Clinical and Laboratory Standards Institute. 2022. Performance standards for antimicrobial susceptibility testing, 32th.M100.Clinical and Laboratory Standards Institute, Wayne, PA. 978-1-68440-135-2. https://clsi.org/standards/products/microbiology/documents/m100/
6. Costa, S. S., C. Falcão, M.Viveiros, D. Machado, M. Martins, J. Melo-Cristino, and I. Couto . 2013. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiology, 13, 1-2. https://doi.org/10.1186/1471-2180-11-241
7. Fisher, J. F., S. O Meroueh, and S. Mobashery. 2005. Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity. Chemical reviews, 105(2), 395-424. https://doi.org/10.1021/cr030102i
8. Harish, B. N., and G. A. Menezes. 2011. Antimicrobial resistance in typhoidal Salmonella. Indian Journal of Medical Microbiology, 29(3), 223-229. https://doi.org/10.4103/0255-0857.83904
9. Hassan, M., A. Ali, A.Ahmad, M. K.Saleemi, M. Wajid, Y. Sarwar, and M. Iqbal. 2021. Purification and antigenic detection of lipopolysaccharides of Salmonella enterica serovar Typhimurium isolate from Faisalabad, Pakistan. Pakistan Veterinary Journal, 41(3).437-438. https://doi.org/10.1186/s40064-016-3643-x
10. Horobin, R. W. and J. A. Kiernan. 2002. Conn’s Biological Stains, 10th edn. Oxford, UK: BIOS Scientific Publishers. https://doi.org/10.1201/9781003076841
11. Karkey, A., G. E. Thwaites, and S. Baker. 2018. The evolution of antimicrobial resistance in Salmonella Typhi. Current opinion in gastroenterology, 34(1), 25-30. https://doi.org/10.1097/mog.0000000000000406
12. Khan, S., B. N. Harish, G. A. Menezes, N. S. Acharya, and S. C. Parija. 2012. Early diagnosis of typhoid fever by nested PCR for flagellin gene of Salmonella enterica serotype Typhi. The Indian Journal of Medical Research, 136(5), 850-854. https://pmc.ncbi.nlm.nih.gov/articles/PMC3573608/
13. Koronakis V, A. Sharff, E. Koronakis, B. Luisi and C. Hughes. 2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature, 405(6789):914-919. https://doi.org/10.1038/35016007
14. Lim, L.M., N. Ly, D. Anderson, J.C.Yang, L. Macander, A. Jarkowski III, A. Forrest, J.B. Bulitta, and B.T. Tsuji. 2010. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy, 30(12), pp.1279-1291. https://doi.org/10.1592/phco.30.12.1279
15. Livermore, D. M. 1995.beta -Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews, 8(4), 557-584. https://doi.org/10.1128/CMR.00061-10
16. Maher. S. Al – Rubaye and A. A. Al-Doori. 2023. Detection Of Some Virulence, Antibacterial Resistance Genes For Salmonella Isolated From Dogs In Baghdad City. Iraqi Journal Of Agricultural Sciences, 54(3), 741-747. https://doi.org/10.36103/ijas.v54i3.1756
17. Mahmood, S. S. 2022. The prevalence of blandm,blavim genes among enterobacter cloacae bacteria. Iraqi Journal of Agricultural Sciences, 53(4), 958-964. https://doi.org/10.36103/ijas.v53i4.1608
18. Majowicz, S. E., J. E. Musto, F. J. Scallan, M. Angulo and S. J. Kirk. 2010. O'Brien, and International Collaboration on Enteric Disease “Burden of Illness” Studies. The global burden of nontyphoidal Salmonella gastroenteritis. Clinical Infectious Diseases, 50(6), 882-889. https://doi.org/10.1086/650733
19. Martins, M.; M. Viveiros, I. Couto, SS. Costa; T. Pacheco; S. Fanning; JM. Pagès, and L. Amaral. 2011. Identification of efflux pump-mediated multidrugresistant bacteria by the ethidium bromide-agar cartwheel method. In Vivo. 25(2):171-178. https://pubmed.ncbi.nlm.nih.gov/21471531/
20. Martins, Marta, Bruno Santos, Ana Martins, Miguel Viveiros, Isabel Couto, Alexandra Cruz, Jean-Marie Pagès, Joseph Molnar, Seamus Fanning, and Leonard Amaral. 2006. "An instrument-free method for the demonstration of efflux pump activity of bacteria." In Vivo 20, no. 5 657-664. https://iv.iiarjournals.org/content/20/5/657/tab-article-info.
21. Medeiros, A. A. 1984. β -Lactamases. Br. Med. Bull. 40, 18–27. doi.org/10.1093/oxfordjornals.bmb.a071942
22. Mehta, J., R. Rolta, and K. Dev. 2022. Role of medicinal plants from North Western Himalayas as an efflux pump inhibitor against MDR AcrAB-TolC Salmonella enterica serovar typhimurium: In vitro and In silico studies. Journal of Ethnopharmacology, 282, 114589. https://doi.org/10.1016/j.jep.2021.114589
23. Munir, T., M. Lodhi, S. Ali, S. H. Zaidi, and S. Razak. 2015. Early diagnosis of typhoid by PCR for fliC-d gene of Salmonella Typhi in patients taking antibiotics. Journal of the college of physicians and surgeons Pakistan, 25(9), 662-666. https://pubmed.ncbi.nlm.nih.gov/26374362/
24. Malik, Y. S., A. A. P. Milton, S. Ghatak, S. Ghosh, Y. S. Malik, A. A. P. Milton, S. Ghatak, and S. Ghosh. 2021. Avian salmonellosis. Role of Birds in Transmitting Zoonotic Pathogens, 183-196. https://doi.org/10.1007/978-981-16-4554-9_15
25. Paulsen, I. T., M. H. Brown, and R. A. Skurray. 1996. Proton-dependent multidrug efflux systems. Microbiological reviews, 60(4), 575-608. https://doi.org/10.1128/mr.60.4.575-608.1996
26. Poole K. 2005. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 56(1):20–51.
https://doi.org/10.1093/jac/dki171
27. Rana T, N Kaur, U Farooq, A Khan, and S.K. singh. 2015. Efflux as an arising cause of drug resistance in Punjab-India. IJBPAS. 4(9):5967–5979. https://doi.org/10.1093/jac/dki171.
28.Saber, N., and N. J. Kandala. 2018. The inhibitory effect of fluphenazinedecanoate and caffeine on Staphylococcus aureus efflux pumps. Cur. Res. Micro. Biotech, (6), 2.1530-1535. https://www.researchgate.net/publication/323687510_.
29. Saeed, M., M.H. Rasool, F. Rasheed, M. Saqalein, M.A. Nisar, A.A. Imran, S. Tariq, A. Amir, A. Ikram, and M. Khurshid. 2020. Extended-spectrum beta-lactamases producing extensively drug-resistant Salmonella Typhi in Punjab, Pakistan. The Journal of Infection in Developing Countries, 14(2), pp.169-176. https://doi.org/10.3855/jidc.12049
30. Schumacher, A., R. Trittler, J.A. Bohnert, K. Kümmerer, J.M. Pagès, and W.V. Kern. 2007. Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. Journal of Antimicrobial Chemotherapy, 59(6), pp.1261-1264. https://doi.org/10.1093/jac/dkl380
31. Sennhauser, G., M. A. Bukowska, C Briand, and M. G. Grütter. 2009. Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. Journal of Molecular Biology, 389(1), 134-145. https://doi.org/10.1016/j.jmb.2009.04.001
32. Tikhonova EB, Q Wang and HI. Zgurskaya. 2002. Chimeric analysis of the multicomponent multidrug efflux transporters from gram negative bacteria. J Bacteriol, 184(23):6499-6507. https://doi.org/10.1128/jb.184.23.6499-6507.2002
33. Van Bambeke, F., E. Balzi, and P. M. Tulkens. 2000. Antibiotic efflux pumps. Biochemical pharmacology, 60(4), 457-470. https://doi.org/10.1016/s0006-2952(00)00291-4
34. Weston, N., P. Sharma, V. Ricci, and L. J. Piddock. 2018. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Research in microbiology, 169(7-8), 425-431. https://doi.org/10.1016/j.resmic.2017.10.005
35. Wilke, M. S., A. L. Lovering, and N. C. Strynadka. 2005. β-Lactam antibiotic resistance. A current structural perspective. Curr. Opin. Microbiol.8, 525–533. https://doi.org/10.1016/j.mib.2005.08.016
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.