IMPACT OF IRON OXIDE ON CAPSAICIN ALKALOID PRODUCTION FROM Capsicum annuum L. IN VITRO

Authors

  • E. H. Jassim
  • R. K. Mohammed

DOI:

https://doi.org/10.36103/bv6vah49

Keywords:

active compounds, chili pepper , abiotic catalysts, plant tissue culture.

Abstract

The chili pepper plant Capsicum annuum L. is used in processed foods and pharmaceuticals given the importance of Capsaicin; it has been produced through cell cultures of chili pepper obtained from a media known as  Murashige and Skoog (MS), which is supplied by the best concentration1.5 and 0.3 mg/L of 2,4-Dichlorophenoxyacetic acid (2,4-D) and kinetin (kin.), respectively, gave highest fresh and dry weights of callus, reaching (368.06,29.40) mg respectively which was significantly different from other treatments. When determining the alkaloid compound capsaicin by HPLC, Its amount in the callus was found to be 3.8 μg/g after being treated with a nano dose of 0 mg/L. an increase of 1.5 fold over the quantity in the leaves of the plant growing in the field, which reached 2.5 μg/g. In order to increase the synthesis of active compound studied stimulated by iron oxide nanoparticles at concentrations (0, 2, 4, 6, 8, and 10) mg/L, the findings indicated that 6 mg/L caused a highly significant increase in Capsaicin, reaching 6.2 μg/g by the amount 1.6 fold compared to 3.8 μg/g in the treatment free the nanocatalyst. While the concentration of 6 mg/L achieved a 2.5-fold increase in its presence in the chili pepper intact leaf sample, the results show that Fe3O4NPs were effective in stimulating the accumulation of capsaicin compound.

References

1. Abed, A. S. and E. H. Jassim. 2024. Enhancement of the production of tropane alkaloids in the Hyoscyamus niger L. callus using different biotic elicitors. Iraqi Journal of Science,65(9): 4993-5004. https://doi.org/10.24996/ijs.2024.65.9.16

2. Al-Shimmary, S. M. , Z. H.Shehab, and E. H. Jassim. 2025. Exploring the antibacterial, antifungal and anticancer effects of a novel bacteriocin- cerium oxide nanoconjugate. Inorganic Chemistry Communications, 174,113925. https://doi.org/10.1016/j.inoche.2025.113925

3. Alwash ,B.M.J., Z. O. Salman and S. F.Hamad. 2020. Qualitative and quantitative evaluation of active constituents in callus of Lavandula angustifolia plant in vitro Baghdad Science Journal, 17(2)(SI):591-598. . https://doi.org/10.21123/bsj.2020.17.2 (SI).0591

4. Antonelli A., C. Fry , R. Smith , M. Simmonds , P. Kersey, H. Pritchard,et al.2020. State of the World’s Plants and Fungi. Royal Botanic Gardens: Kew. org. pp:96 https://doi.org/10.34885/172

5. Ayoobi, A., A.Saboora , E. Asgarani, and T. Efferth. 2024. Iron oxide nanoparticles (Fe3O4-NPs) elicited Artemisia annua L. in vitro, toward enhancing artemisinin production through overexpression of key genes in the terpenoids biosynthetic pathway and induction of oxidative stress. Plant Cell, Tissue and Organ Culture (PCTOC), 156(3): 85. https://doi.org/10.1007/s11240-024-02705-9

6.Ban,M.A.and O. M. S. Ibrahim.2024. Effect of Syzygium aromaticum L. essential oil extract against pathogenic Candida albicans in-vitro. Iraqi Journal of Agricultural Sciences ,55(6):2177-2185. https://doi.org/10.36103/4984kw67

7.Bayat, L., and A. Saboora .2023. Improvement of production of alkaloid and flavonoid compounds in Narcissus tazetta L. callus under iron oxide nanoparticles (Fe3O4-NPs) and trans-cinnamic acid and L-phenylalanine treatments. Journal of Plant Biological Sciences,15(1),:85-110.

DOI: https://www.sid.ir/paper/655659/en

8. Behbehani, J. M., M.Irshad , S. Shreaz, and M. Karched .2023. Anticandidal activity of capsaicin and Its effect on ergosterol biosynthesis and membrane integrity of Candida albicans. International Journal of Molecular Sciences, 24(2):1046.

https://doi.org/10.3390/ijms24021046

9. Chanthai, S., J. Juangsamoot, C. Ruangviriyachai and S. Techawongstien . 2012. Determination of capsaicin and dihydrocapsaicin in some chilli varieties using accelerated solvent extraction associated with solid‐phase extraction methods and RP‐HPLC‐fluorescence. Journal of Chemistry, 9 (3), 1550-1561. https://doi.org/10.1155/2012/380574

10.Dudwal, M. 2021. A review study on medicinal uses and health advantage of chili pepper. International Journal of Innovative Research in Computer Science and Technology, 9(5), 83-86.2021

https://doi.org/10.55524/ijircst.2021.9.5.17

11. Ebrahimzadeh, H., A. Ataei-Azimi and M. Noori-Daloi.1996. The distribution of indole alkaloids in different organs of Catharanthus roseus L. G. Don. (Vinca rosea L.) Daru. J. Sch. Pharm., 6(1):11-24.

https://api.semanticscholar.org/CorpusID:89807655

12. Eshraq, J. k. , S. A. AL sahib, and B. M. AL-Timimi.2024. Evaluate the effect of cinnamon zeylanicum oil extract in inhibition of bacteria in laboratory biscuit. Iraqi Journal of Agricultural Sciences , 55(3), 1048-1063. https://doi.org/10.36103/h2cgqb53

13. George, E.F., M.A. Hall and D. G.J. Klerk. 2008. Plant Propagation by Tissue Culture. 3rd ed., Springer, Dordrecht, Netherlands, pp: 501.

14. Großkinsky, D. K. and J.Petrášek. 2019. Auxins and cytokinins the dynamic duo of growth regulating phytohormones heading for new shores. New Phytol., 221(3):1187–1190. https://doi.org/10.1111/nph.15556

15. Ibeh, A. G. and K. C. Egbucha. 2023. Appraisal of some medicinal and other uses of chilli pepper (Capsicum frutescens Linn.). World Journal of Pharmaceutical Research,12(4),119-133, https://doi.org/10.20959/wjpr20234-27281

16. Ibrahem ,N. M., E. J. Khadum and S. H. Mutlag. 2022. Isolation of catchin and epigallocatchin From Iraqi rhus coriaria by Preparative high-Performance Liquid chromatography (PHPLC). Iraqi Journal of Pharmaceutical Sciences,31(2), 271-282..

https://doi.org/10.31351/vol31iss2pp271-282

17. Iqbal, M., Z. E. Aftab, H. Anjum, T., Rizwana, H., Akram, W., A. Aftab and G. Li.2024. Nano-Integrated plant tissue culture to increase the rate of callus induction, growth, and curcuminoid production in Curcuma longa. Plants, 13(13):1819. doi:10.3390/plants13131819

18. Irum, S., N. Jabeen, K. S. Ahmad, Shafique, S.; Khan, T.F. and H. Gul. 2020. Biogenic iron oxide nanoparticles enhance callogenesis and regeneration pattern of recalcitrant Cicer arietinum L. PLoS ONE 15(11): e0242829 https://doi.org/10.1371/journal.pone.0242829

19. Izad, A. A., R. Nulit , C. A. C. Abdullah ,T. H. Fang and M. H. Ibrahim.2019.Growth , leaf gas exchange and biochemical changes of oil palm (Elaeis guineensis Jacq.) seedlings as affected by iron oxide nanoparticles.AIMS Materials Science,6(6):960-984. doi:10.3934/matersci.2019.6.960

20. Jasim, H.Y. and H. M. Habeeb . 2024. Effect of biotic and abiotic elicitors on Salvadora persica callus in vitro . Baghdad Science Journal, 21, (9):2829. https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9439

21. Joshi, N., K.Bhattarai , S.Sinha , B. Rawat, , N. Rai , Anand, J., and J. M. Rawat .2024. Production of secondary metabolites from medicinal plants through tissue culture. In Secondary Metabolites and Biotherapeutics (pp.63-77).AcademicPress. https://doi.org/10.1016/B978-0-443-16158-2.00007-0

22. Kdhim S.J., E.H. Jassim and H.H. Salih.2020. Effect of salicylic acid on increasing of some phenolic acid and flavonoids in Coriandrum sativum callus. Plant Archives, 20 (1):3007-3014. https://www.plantarchives.org/SPECIAL%20ISSUE%2020-1/3007-3014%20(231).pdf

23. Kim, S., J. Chen ,T. Cheng , A. Gindulyte , J. He ,S. He , Q. Li , B. A. Shoemaker, P. A. Thiessen , B. E.Yu , L. Zaslavsky, J. Zhang and E. Bolton .2023. Pub Chem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380.

https://doi.org/10.1093/nar/gkac956

24. Kokina,I.,I.Mickeviča,I.Jahundoviča, A. Ogurcovs, M. Krasovska, Jermaļonoka, M. Mihailova,E.Tamanis and V.Gerbreders.2017. Plant explants grown on medium supplemented with Fe3O4 nanoparticles have a significant increase in embryogenesis. Journal of Nanomaterials,(1),4587147. https://doi.org/10.1155/2017/4587147 25.Kouhi,S.M.M.andM.Lahouti.2018.Application of ZnO nanoparticles for inducing callus in tissue culture of Rapeseed.International Journal of Nanoscience and Nanotechnology, 14(2):133-141. doi:https://www.ijnnonline.net/article_31221_81efffe6ced02f12a43080a6cc55331d.pdf

26. Kumar, S., M. Sarpras, F. Mushtaq, S. Singh, A. Thattantavide, and A. Kumar.2024. Capsaicin-Producing Plants: Species Diversity, Distribution and Botanical Details. In Capsaicinoids: From Natural Sources to Biosynthesis and their Clinical Applications, pp. 1-24. Singapore: Springer Nature Singapore.

doi:10.1007/978-981-99-7779-6_1

27. Lee, Y. , D.E.Lee, H.S. Lee , S.K. Kim ,W.S. Lee , S.H. Kim and M.W. Kim .2011. Influence of auxins, cytokinins, and nitrogen on production of rutin from callus and adventitious roots of the white mulberry tree (Morus alba L.). Plant Cell, Tissue and Organ Culture,105(1):9-19. https://doi.10.1007/s11240-010-9832-3

28. Mutasher, H.H. and H.J. Attiya .2019. Induced callus from seedlings of Peganum harmala L. and studying harmine compound concentration and by GC analysis. in vitro in vivo . Iraqi Journal of Science,60(7):1442-1451. https://doi.org/10.24996/ijs.2019.60.7.4

29. Muthuswamy, R. , S. Asish and M. Nison . 2021 . Review on capsicum frutescens , a tribal herbal food used as medicine. Research Journal of Pharmacognosy and Phytochemistry , 13(4), 191-194.

doi:10.52711/0975-4385.2021.00033

30.Normasari,R.,E. L. Arumingtyas ,R. Retnowati, and W. Widoretno.2023. The Combination Effect of Auxin and Cytokinin on Callus Induction of Patchouli (Pogostemon Cablin Benth.) from Leaf Explants , In 3rd International Conference on Biology, Science and Education (IcoBioSE 2021) ,pp.551-557. doi:10.2991/978-94-6463-166-1_66

31. Oubaid ,E. N., A. R. Abu-Raghif and I. M. Al-Sudani. 2023. Phytochemical screening and antioxidant activity of uncaria to mentosa extract: In Vitro and InVivo Studies. Medical Journal of Babylon, 2023;20(1):136-42.

https://doi.org/10.4103/MJBL.MJBL_310_22

32. Ramawat, K. G. 2008. Plant Biotechnology. Schand Company LTD, Ram Nagar, New Delhi. India ,pp :24-40.

33. Samaranayake, P., B. D. Peiris and S.Dssanayake. 2012. Effect of excessive ferrous (Fe2+) on growth and iron content in rice (Oryza sativa).International Journal of Agriculture and Biology 14(2):296–298.

https://www.cabidigitallibrary.org/doi/pdf/10.5555/20123099887

34. SAS. , Statistical Analysis System, User's Guide. Statistical, Version 9.6th ed. SAS. Inst. Inc. Cary. N.C. USA. 2018.

35. Shaghati , H. A , E. H. Jassim, and L. A. K. AL-Zubaidi. 2023. Evaluation of the inhibitory activity of Syzygium aromaticum

36. extract- chitosan nanoparticles against biofilm formation of Klebsiella pneumonia.

37. Bionatura,8 (1) :1-14

https://ouci.dntb.gov.ua/en/works/9GwKwvJ9/

36. Zargar, S. M., G. K. Agrawal, R.Rakwal, and Y. Fukao. 2015. Quantitative proteomics reveals role of sugar in decreasing photosynthetic activity due to Fe deficiency. Front PlantSci.,6:592. https://doi.org/10.3389/fpls.2015.00592

Downloads

Published

2025-04-24

Issue

Section

Articles

How to Cite

E. H. Jassim, & R. K. Mohammed. (2025). IMPACT OF IRON OXIDE ON CAPSAICIN ALKALOID PRODUCTION FROM Capsicum annuum L. IN VITRO. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(2), 744-754. https://doi.org/10.36103/bv6vah49