NUTRITIONAL VALUE AND BIOLOGICAL ACTIVITY OF K. ALVAREZII GROWN IN INTEGRATED MULTI-TROPHIC AQUACULTURE

Authors

  • R.A. Islamy
  • V. Hasan
  • Sze-Wan Poong
  • Y. Kilawati
  • A.P. Basir
  • A.S. Kamarudin

DOI:

https://doi.org/10.36103/6kp06e71

Keywords:

C. racemosa, chlorophyll extraction, green solvents, NADES, sustainable extraction

Abstract

This study aimed to assess the nutritional value, phytochemical composition, and antioxidant activity of Kappaphycus alvarezii cultivated in Integrated Multi-Trophic Aquaculture (IMTA) systems. The parameters were nutritional components, phytochemical content, and aAntioxidant activity. K. alvarezii exhibited substantial nutritional value, with notable protein (15.3%) and carbohydrate (60.0%) content, along with essential minerals such as calcium and magnesium. Phytochemical analysis revealed significant levels of polyphenols (20.0 mg GAE/g), flavonoids (5.5 mg QE/g), and tannins (3.0 mg CE/g), as well as noteworthy saponin (1.2%) and alkaloid (0.9%) contents. Antioxidant assays demonstrated strong activities, with 80.2% DPPH and 70.5% ABTS radical scavenging, a FRAP value of 600 µmol Fe2+/g, and a total antioxidant capacity of 150 mg AA/g. The findings indicate that K. alvarezii from IMTA systems is a valuable source of nutrients and bioactive compounds with significant antioxidant properties.

References

1. Al-Mousawi, Z. J., Y. F. Salloom, and Z. M. Abdul-Qader. 2024. Evaluation of foliar spray with extract of marine algae and yeast and mowing date on growth, yield, and active components of watercress. Iraqi Journal of Agricultural Sciences, 55(1), 459-469.

https://doi.org/10.36103/6310fv68

2. Aline Nunes, G. Z. Azevedo, F de S Dutra, B R dos Santos, A R Schneider, E R Oliveira, S Moura, F Vianello, M Maraschin, and G P P Lima. 2021. Uses and applications of the red seaweed Kappaphycus alvarezii: a systematic review. Journal of Applied Phycology, 1-42.

3. Arulvendhan, V., P.S. Bhavan, and R. Rajaganesh. 2024. Molecular Identification and Phytochemical Analysis and Bioactivity Assessment of Catharanthus roseus Leaf Extract: Exploring Antioxidant Potential and Antimicrobial Activities. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-024-04902-w

4. Bhuyar, P., S. Sundararaju, M.H.A. Rahim, Y. Unpaprom, G.P. Maniam, and N. Govindan. 2021. Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed. SN Applied Sciences/SN Applied Sciences, 3(4). https://doi.org/10.1007/s42452-021-04477-9

5. Chaisuwan, W., Y. Phimolsiripol, T. Chaiyaso, C. Techapun, N. Leksawasdi, K. Jantanasakulwong, P. Rachtanapun, S. Wangtueai, S.R. Sommano, S. You, J.M. Regenstein, F.J. Barba, and P. Seesuriyachan. 2021. The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: potential uses for enhancing immune systems and preventing viruses. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.772033

6. Chan, P. T., and P. Matanjun. 2017. Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chemistry, 221, 302–310. https://doi.org/10.1016/j.foodchem.2016.10.066

7. Chaudhary, P., P. Janmeda, A.O. Docea, B. Yeskaliyeva, A.F.A. Razis, B. Modu, D. Călina, and J. Sharifi‐Rad. 2023. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 11. https://doi.org/10.3389/fchem.2023.1158198

8. Dong, M., Y. Jiang, C. Wang, Q. Yang, X. Jiang, and C. Zhu. 2020. Determination of the extraction, physicochemical characterization, and digestibility of sulfated polysaccharides in seaweed—porphyra haitanensis. Marine Drugs, 18(11), 539. https://doi.org/10.3390/md18110539

9. Febrinda, AE., F. Laila, N. Mariyani, I. Resmeiliana, and L. Dahliani. 2023. Phytochemical profiles and the effect of three drying methods on antioxidant and antibacterial activity of Eleutherine bulbosa (Mill.) Urb. South African Journal of Botany, 157, 258–265. https://doi.org/10.1016/j.sajb.2023.03.063

10. Gressler, V., N.S. Yokoya, M.T. Fujii, P. Colepicolo, J.M. Filho, R.P. Torres, and E. Pinto, 2010. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red Algae species. Food Chemistry, 120(2), 585–590. https://doi.org/10.1016/j.foodchem.2009.10.028

11. Guan, R., Q. Van Le, H. Yang, D. Zhang, H. Gu, Y. Yang, C. Sonne, S.S. Lam, J. Zhong, Z. Jianguang, R. Liu, and W. Peng. 2021. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere, 271, 129499. https://doi.org/10.1016/j.chemosphere.2020.129499

12. Gullón, B., M. Gagaoua, F.J. Barba, P. Gullón, W. Zhang, and J.M. Lorenzo. 2020. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends in Food Science & Technology, 100, 1–18. https://doi.org/10.1016/j.tifs.2020.03.039

13. Habeebullah, S.F.K., S. Alagarsamy, S. Al-Haddad, and F. Al-Yamani. 2023. Composition, in vitro antioxidant and angiotensin-converting enzyme inhibitory effects of lipids isolated from fifteen species of seaweeds. Food Chemistry Advances, 3, 100352. https://doi.org/10.1016/j.focha.2023.100352

14. Harsij, M., H.G. Kanani, and H. Adineh. 2020. Effects of antioxidant supplementation (nano‑selenium, vitamin C and E) on growth performance, blood biochemistry, immune status and body composition of rainbow trout (Oncorhynchus mykiss) under sub-lethal ammonia exposure. Aquaculture, 521, 734942. https://doi.org/10.1016/j.aquaculture.2020.734942

15. Hayashi, L. and R. P. Reis. 2022. Cultivation of the red algae Kappaphycus alvarezii in Brazil and its pharmacological potential. Revista Brasileira de Farmacognosia, 22, 748-752.

16. Idris, L., M.A. Adli, N.N. Yaacop, and R.M. Zohdi. 2023. Phytochemical screening and antioxidant activities of Geniotrigona thoracica propolis extracts derived from different locations in Malaysia. Malaysian Journal of Fundamental and Applied Sciences, 19(6), 1023–1032. https://doi.org/10.11113/mjfas.v19n6.3128

17. Islamy, R.A., U. Yanuhar, and A.M.S. Hertika. 2017. Assessing the genotoxic potentials of methomyl-based pesticide in tilapia (Oreochromis niloticus) using micronucleus assay. The Journal of Experimental Life Science, 7(2), 88–93. https://doi.org/10.21776/ub.jels.2017.007.02.05

18. Kasmiati, K., S. Syahrul, B. Badraeni, and M.H. Rahmi. 2022. Proximate and mineral compositions of the green seaweeds Caulerpa lentilifera and Caulerpa racemosa from South Sulawesi Coast, Indonesia. IOP Conference Series. Earth and Environmental Science, 1119(1), 12049. https://doi.org/10.1088/1755-1315/1119/1/012049

19. Khotijah, S., M. Irfan, and F. Muchdar. 2020. Nutritional composition of seaweed Kappaphycus alvarezii. Agrikan, 13(2), 139–146. https://doi.org/10.29239/j.agrikan.13.2.139-146

20. Kilawati, Y., and R.A. Islamy. 2019. The Antigenotoxic activity of brown seaweed (Sargassum sp.) extract against total erythrocyte and micronuclei of tilapia Oreochromis niloticus exposed by methomyl-base pesticide. The Journal of Experimental Life Science. https://doi.org/10.21776/ub.jels.2019.009.03.11

21. Kumar, K.S., K. Ganesan, and P.V.S. Rao. 2014. Seasonal variation in nutritional composition of Kappaphycus alvarezii (Doty) Doty—an edible seaweed. Journal of Food Science and Technology/Journal of Food Science and Technology, 52(5), 2751–2760. https://doi.org/10.1007/s13197-014-1372-0

22. Loayza- Aguilar, R. E., Y. P. Huamancondor- Paz, G.B. Saldaña-Rojas, and G.E. Olivos-Ramirez. 2023. Integrated multi-trophic aquaculture (IMTA): Strategic model for sustainable mariculture in Samanco Bay, Peru. Frontiers in Marine Science, 10. https://doi.org/10.3389/fmars.2023.1151810

23. Muscolo, A., O. Mariateresa, T. Giulio, and R. Mariateresa. 2024. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. International Journal of Molecular Sciences, 25(6), 3264. https://doi.org/10.3390/ijms25063264

24. Naskar, S., G. Biswas, P. Kumar, D. De, S. Das, P.B. Sawant, N.K. Chadha, and P. Behera. 2023. The green seaweed, Enteromorpha intestinalis: An efficient inorganic extractive species for environmental remediation and improved performances of fed species in brackishwater integrated multi-trophic aquaculture (BIMTA) system. Aquaculture, 569, 739359. https://doi.org/10.1016/j.aquaculture.2023.739359

25. Nielsen, C.W., T. Rustad, and S.L. Holdt. 2021. Vitamin C from Seaweed: A Review Assessing Seaweed as Contributor to Daily Intake. Foods, 10(1), 198. https://doi.org/10.3390/foods10010198

26. Nova, P., A.M. Gomes, and A.R. Costa-Pinto. 2023. It comes from the sea: macroalgae-derived bioactive compounds with anti-cancer potential. Critical Reviews in Biotechnology, 1–15. https://doi.org/10.1080/07388551.2023.2174068

27. Pandey, D., G. Næss, A.J.M. Fonseca, M.R.G. Maia, A.R.J. Cabrita, and P. Khanal. 2023. Differential impacts of post-harvest hydrothermal treatments on chemical composition and in vitro digestibility of two brown macroalgae (Fucales, Phaeophyceae), Ascophyllum nodosum and Fucus vesiculosus, for animal feed applications. Journal of Applied Phycology, 35(5), 2511–2529. https://doi.org/10.1007/s10811-023-03044-6

28. Perez-Vazquez, A., M. Carpena, P. Barciela, L. Cassani, J. Simal-Gandara, and M.A. Prieto. 2023. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants, 12(3), 612. https://doi.org/10.3390/antiox12030612

29. Rajaram, R., T. Muralisankar, B.A. Paray, and M.K. Al‐Sadoon. 2021. Phytochemical profiling and antioxidant capacity of Kappaphycus alvarezii (Doty) Doty collected from seaweed farming sites of tropical coastal environment. Aquaculture Research, 52(7), 3438–3448. https://doi.org/10.1111/are.15188

30. Rawiwan, P., Y. Peng, I.G.P.B. Paramayuda, and S.Y. Quek. 2022. Red seaweed: A promising alternative protein source for global food sustainability. Trends in Food Science & Technology, 123, 37–56. https://doi.org/10.1016/j.tifs.2022.03.003

31. Rudke, A.R., M. Da Silva, C.J. De Andrade, L. Vitali, and S.R.S. Ferreira. 2022. Green extraction of phenolic compounds and carrageenan from the red alga Kappaphycus alvarezii. Algal Research, 67, 102866. https://doi.org/10.1016/j.algal.2022.102866

32. Sasue, A., Z.M. Kasim, and S.I. Zubairi, 2023. Evaluation of phytochemical, nutritional and sensory properties of high fibre bun developed by utilization of Kappaphycus alvarezii seaweed powder as a functional ingredient. Arabian Journal of Chemistry, 16(8), 104953. https://doi.org/10.1016/j.arabjc.2023.104953

33. Sundararaju S.,P. Bhuyar, M. H. Rahim, , G. P. Maniam, and Njgj Govindan. 2020. Antioxidant and antibacterial activity of red seaweed Kappaphycus alvarezii against pathogenic bacteria. Global Journal of Environmental Science and Management, 6(1), 47-58.

34. Spiegel, M., K. Kapusta, W. Kołodziejczyk, J. Saloni, B. Żbikowska, G.A. Hill, and Z. Sroka. 2020. Antioxidant activity of selected phenolic Acids–Ferric reducing antioxidant power assay and QSAR analysis of the structural features. Molecules/Molecules Online/Molecules Annual, 25(13), 3088. https://doi.org/10.3390/molecules25133088

35. Stedt, K., O.B. Gustavsson, I. Kollander, G.B.. Undeland,Toth, and H. Pavia. 2022. Cultivation of Ulva fenestrata using herring production process waters increases biomass yield and protein content. Frontiers in Marine Science, 9. https://doi.org/10.3389/fmars.2022.988523

36. Sytařová, I., J. Orsavová, L. Snopek, J. Mlček, Ł. Byczyński, and L. Mišurcová. 2020. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chemistry, 310, 125784. https://doi.org/10.1016/j.foodchem.2019.125784

37. Takatsuka, M., S. Goto, K. Kobayashi, Y. Otsuka, and Y. Shimada. 2022. Evaluation of pure antioxidative capacity of antioxidants: ESR spectroscopy of stable radicals by DPPH and ABTS assays with singular value decomposition. Food Bioscience, 48, 101714. https://doi.org/10.1016/j.fbio.2022.101714

38. Tumilaar, S.G., A. Hardianto, H. Dohi, and D. Kurnia. 2024. A comprehensive review of free radicals, oxidative stress, and antioxidants: overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry, 2024, 1–21. https://doi.org/10.1155/2024/5594386

39. Teo, S., V. Chang, and P. N. Okechukwu. 2017. The properties of red seaweed (Kappaphycus alvarezii) and its effect on mammary carcinogenesis. Biomedicine & Pharmacotherapy, 87, 296-301.

40. Yadav, J.P., A. Verma, P. Pathak, V. Kumar, and D.K. Patel. 2024. Wound healing, antidiabetic and antioxidant Activity of Neolamarckia cadamba, quercetin rich,

extract. Pharmacological Research. Modern Chinese Medicine, 11, 100417. https://doi.org/10.1016/j.prmcm.2024.100417

41. Yu, M., I. Gouvinhas, J. Rocha, and A.I.R.N.A. Barros. 2021. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-89437-4

42. Zhang, L., H. Zhang, L. Tang, X. Hu, and M. Xu. 2022. Isolation, characterization, antioxidant activity, metal-chelating activity, and protein-precipitating capacity of condensed tannins from plum (Prunus salicina) Fruit. Antioxidants, 11(4), 714. https://doi.org/10.3390/antiox11040714

Downloads

Published

2025-02-25

Issue

Section

Articles

How to Cite

R.A. Islamy, V. Hasan, Sze-Wan Poong, Y. Kilawati, A.P. Basir, & A.S. Kamarudin. (2025). NUTRITIONAL VALUE AND BIOLOGICAL ACTIVITY OF K. ALVAREZII GROWN IN INTEGRATED MULTI-TROPHIC AQUACULTURE. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(1), 617-626. https://doi.org/10.36103/6kp06e71

Similar Articles

1-10 of 204

You may also start an advanced similarity search for this article.