IMPACT OF RECIPROCAL CROSS AND HETEROSIS PHENOMENON ON VARIOUS TOMATO TRAITS
DOI:
https://doi.org/10.36103/hywhn282Keywords:
reciprocal cross, heterosis, physiochemical characteristics, yield and yield components.Abstract
This research aimed to study the impact of the reciprocal cross and heterosis phenomena on numerous tomato (Solanum lycopersicum L.) characteristics. Fifty-one different traits were measured, including leaf, shoot, root, flower, fruit, yield and yield components, and physiochemical characteristics. The results showed that reciprocal crosses, such as plant mass, petal length, cone length, pistil length, fruit width, fruit length, single fruit weight, fruit flesh weight, seed and placenta weight, number of fruits locules, fruit calyx weight, number of days to flower, total sugar, ascorbic acid, anthocyanin, and total phenolic concentration, significantly influenced various traits. In addition, the results showed that several traits showed positive high parent heterosis, which are the sepal length, pistil length, flower fresh weight, flower dry weight, flower moisture content, number of clusters per plant, number of flowers per plant, number of flowers per cluster, number of fruits per cluster, fruits number per plant, total fruits weight per plant, leaf length, leaf fresh weight, leaf dry weight, number of branches per plant, plant height, plant mass, ascorbic acid, total carotene, and anthocyanin. These results will be significantly helpful for the future breeding program, especially for developing F1 cultivars with significant quality and quantity.
References
1.Aakanksha, S.K.Yadava, B.G. Yadav, V. Gupta, A. Mukhopadhyay, and D.Pental. 2021. Genetic analysis of heterosis for yield influencing traits in brassica juncea using a doubled haploid population and its backcross progenies. front Plant Sci.12(9):1–18. https://doi.org/10.3389/fpls.2021.721631
2.Adaay M.H., and M.M. ALabdaly. 2019 Field performance , hybrid vigor and estimation of some of genetic parameters in tomato (Lycopersicon esculentummill.). Plant Arch.19(1):559–64.
3.Al-Amery L.K.J, and A.H. Annon. 2024 Effect of different levels of salt and drought stresses on gene expression of two tolerance-different tomato cultivars in vitro. Iraqi Journal of Agricultural Sciences.55(2):795–802. https://doi.org/10.36103/gc35eh69
4.Anthon G., and D. M. Barrett. 2007 Standardization of a rapid spectrophotometric method for lycopene analysis. Acta Hortic.758:111–28. https://doi.org/10.17660/ActaHortic.2007.758 .12
5. Arkwazee H. 2022 Evaluation of Various Tomato Cultivars for some Physiochemical Characteristics Influencing Flavor and Nutritive Properties.ProEnvironment.50:264– 77. https://journals.usamvcluj.ro/index.php/pro mediu/article/view/14559
6. Azimi M.H. 2020 Heterosis and genetic diversity in the crossings of gladiolus cultivars Amsterdam and white prosperity. Ornam Hortic.26(2):177–89. https://doi.org/10.1590/2447- 536X.v26i2.2095
7.Aziz H.A. 2013 Effect of planting date and different sizes of containere size on vegetative growth and yield of tomato under unheated plastic house conditions . Hortic Landsc Des Dept. collage – Tikrit Univ.13(2):161–70.
8. Bhatt R.P., V.R. Biswas, and N. Kumar. 2001Heterosis, combining ability and genetics for vitamin C, total soluble solids and yield in tomato (Lycopersicon esculentum) at 1700 m altitude. J Agric Sci.137(1):71–5. https://doi.org/10.1017/S0021859601008838
9. Bineau E., J. L. Rambla, R.Duboscq, M.N.Corre , F.Bitton , and R. Lugan . 2022 Inheritance of secondary metabolites and gene expression related to tomato fruit quality. Int J Mol Sci.23(11):2–19.
https://doi.org/10.3390/ijms23116163
10.Birchler J.A., H.Yao , S. Chudalayandi, D.Vaiman , and R.A.Veitia. 2010 Heterosis. Plant Cell.22(7):2105–12.
https://doi.org/10.1105/tpc.110.076133
11.Branisa J., Z. Jenisova , M. Porubska, K. Jomova, and M. Valko. 2016 Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. Microbiol Biotechnol Food Sci. 3(2):61–4. https://www.jmbfs.org/wp-content/uploads/2013/05/16_jmbfs_branisa_2014_b.pdf
12. .Dermail A., B. Suriharn, K. Lertrat ,S. Chankaew , and J. Sanitchon . 2018 Reciprocal cross effects on agronomic traits and heterosis in sweet and waxy corn. Sabrao J Breed Genet. 50(4):444–60.
13.Fortuny A.P., R.A. Bueno , J.H. Pereira Da Costa , M.I. Zanor , and G.R. Rodríguez.2021 Tomato fruit quality traits and metabolite content are affected by reciprocal crosses and heterosis. J ExpBot.72(15):5407–25.
https://doi.org/10.1093/jxb/erab222
14.Gimenez M.D., D.V.Vazquez, F. Trepat, V.Cambiaso , and G.R. Rodríguez. 2020 Fruit quality and DNA methylation are affected by parental order in reciprocal crosses of tomato. Plant Cell Rep [Internet]. 10(3):1–16.
https://doi.org/10.1007/s00299-020-02624-x
15. Golkar P., A.Arzani , A. M. Rezaei, Z. Yarali, and M. Yousefi . 2009 Genetic variation of leaf antioxidants and chlorophyll content in safflower. African J Agric Res.4(12):1475–82 https://doi.org/10.5897/AJAR2009.000-9008
16.Gonzalo M. , T. J. Vyn, J. B. Holland, and L.M. McIntyre .2007 Mapping reciprocal effects and interactions with plant density stress in Zea mays L. Heredity (Edinb).99(1):14–30. https://doi.org/10.1038/sj.hdy.6800955
17. Gul R., Hidayat-Ur-Rahman, I.H. Khalil, S.M.A. Shah , and A. Ghafoor .2010 Heterosis for flower and fruit traits in tomato (Lycopersicon esculentum Mill.). African J Biotechnol. 9(27):4144–51.
https://doi.org/10.5897/AJB09.1765
18. Habib H. , S. Sadaqat Mehdi , A. Rashid , M. Zafar , and M. Ashfaq Anjum M. 2007 Heterosis and heterobeltiosis studies for flowering traits, plant height and seed yield in sunflower (Helianthus annuus L.). Int J Agric Biol [Internet]. 43(3):2–6.
19. Haitham M. M. , M. A. Birwari , and S. A. AL-Qadir .2022 Effect of some biological and chemical pesticides in controlling tuta absoluta of tomato. Iraqi Journal of Agricultural Sciences. 53(5):1167–1173.
https://doi.org/10.36103/ijas.v53i5.1630
20. Horwitz W. 1971 Methods in Food Analysis. Physical, Chemical, and Instrumental Methods of Analysis. 2d edition. Vol. 54, Journal of aoac international. new york: New York, Academic Press. 244–244 p.
21.Jiang K., K. L. Liberatore, S. J. Park ,J. P. Alvarez ,and Z.B. Lippman. 2013 Tomato Yield Heterosis Is Triggered by a Dosage Sensitivity of the Florigen Pathway That FineTunes Shoot Architecture. PLoS Genet. 9(12). https://doi.org/10.1371/journal.pgen.1004043
22. Jo W.J., and J.H. Shin.2020 Effect of leafarea management on tomato plant growth in greenhouses. Hortic Environ Biotechnol.61(6):981–8.
https://doi.org/10.1007/s13580-020-00283-1
23.Krieger U., Z.B. Lippman , and D.Zamir . 2010 The flowering gene single flower truss drives heterosis for yield in tomato. Nat Genet. 42(5):2–7.
https://doi.org/10.1038/ng.586
24.Liu Z., J. Jiang , A. Ren , X. Xu , H. Zhang , and T. Zhao.2021 Heterosis and combining ability analysis of fruit yield, early maturity, and quality in tomato. Agronomy .11(4):1–15. https://doi.org/10.3390/agronomy11040807
25. Mahmood A.K., S.M. Sulaiman, and H.A.Arkwazee.2021 Evaluating Yield and fruit quality of newly introduced cherry tomato cultivars under high tunnel conditions. Euphrates J Agric Sci.13 (4): 35-45.
https://www.researchgate.net/profile/Salam-Sulaiman-
26. Malaker A., A.Z. Hossain , T.Akter, and M.S.H.Khan.2016 Variation in morphological attributes and yield of tomato cultivars. Res Agric LivestFish.3(2):287–94.
https://doi.org/10.3329/ralf.v3i2.29349
27.Meyer R.C., O.Törjék , M. Becher , and T. Altmann .2004 Heterosis of biomass production in arabidopsis. Establishment during early development. Plant Physiol.134(4):1813–23. https://doi.org/10.1104/pp.103.033001
28.Miller M. , C. Zhang , and Z.J. Chen . 2012 Ploidy and hybridity effects on growth vigor and gene expression in arabidopsis thaliana hybrids and their parents. G3 Genes, Genomes, Genet. 2(4):505–13.
https://doi.org/10.1534/g3.112.002162
29. Paula, F. A., D. A. Mengarelli, J. H. P. da Costa, G. R. Rodríguez, and M. I. Zanor.2023 Reciprocal effect and heterosis for tomato fruit metabolites revealed by whole transcriptomic analysis of two cultivars and their reciprocal hybrids. Scientia Horticulturae, 308, 111583. https://doi.org/10.1016/j.scienta.2022.111583
30. Reddy G.E., R. Nandan , A. Vaishampayan , and K. Srivastava . 2018 Heterosis and genetic analysis for fruit quality traits in tomato. Soc Sci Dev Agric Technol Meerut.11(12):10–3. https://doi.org/10.5958/2349- 4433.2018.00023.0
31. Rezgar I.S., and M.A.Hussain .2024 Heterosis and genetic parameters for yield and yield components in maize using half diallel cross. Iraqi Journal of Agricultural Sciences. 55(5):1859–1869. https://doi.org/10.36103/6m976r30
32. Ro S., L. Chea , S. Ngoun , Z.P. Stewart , S. Roeurn , and P.Theam. 2021 Response of tomato genotypes under different high temperatures in field and greenhouse conditions. Plants.10(3):1–13.
https://doi.org/10.3390/plants10030449
33. Rowland S.D. ,K. Zumstein , H. Nakayama , Z. Cheng , A.M. Flores, and D.H. Chitwood.2020 Leaf shape is a predictor of fruit quality and cultivar performance in tomato. New Phytol. 226(3):851–65. https://doi.org/10.1111/nph.16403
34.Ruiz B., S. Roux , F. Courtois ,and C. Bonazzi. 2016 Spectrophotometric method for fast quantification of ascorbic acid and dehydroascorbic acid in simple matrix for kinetics measurements.Food Chem.211:583-9. https://doi.org/10.1016/j.foodchem.2016.05.1 07
35. Seymour D.K., E. Chae , D.G. Grimm , C.M. Pizarro , A. Habring-Müller , and F. Vasseur. 2016 Genetic architecture of nonadditive inheritance in Arabidopsis thaliana hybrids. Proc Natl Acad Sci 113(46):E7317–26. https://doi.org/10.1073/pnas.1615268113
36. Shapal H.R., and T.A.Mohammed .2024 Heterosis and gene action for yield and yield components and maize ( Zea Mays L .), using half diallel. Iraqi Journal of Agricultural Sciences 55(6):2108–2116. https://doi.org/10.36103/01mgvd11
37. Singh J., J.A. Clavijo Michelangeli , S.A. Gezan , H. Lee , and C.E. Vallejos.2017 Maternal effects on seed and seedling phenotypes in reciprocal F1hybrids of the common bean (Phaseolus vulgaris L.). Front Plant Sci.8(42):1–13.
https://doi.org/10.3389/fpls.2017.00042
38.Singh M.K., R.P. Singh, P.Singh , R.K. Singh ,and R. Srivastava .2018 Reciprocal crosses in early maturing x high yielding rice (Oryza sativa L .). J Pharmacogn Phytochem.12(13):50–5. https://doi.org/10.22271/j.phyto.2018.v7.i5s.6 565
39. Skelly D.A., and J. Ronald . 2009 Inherited variation in gene expression. Annu Rev Genomics Hum Genet. 10:313–32. doi:10.1146/annurev-genom-082908-150121
40.de Souza L.M., P.C.T. Melo , R.R. Luders, and A.M.T.Melo. 2012 Correlations between yield and fruit quality characteristics of fresh market tomatoes.HorticBras.30(4):627–31. https://doi.org/10.1590/S0102- 05362012000400011
41.Vica S.I., V.Laslo , S. Pantea , and G.E. Bandici. 2010Chlorophyll and Carotenoids Pigments from Mistletoe ( Viscum album ). Fasc Biol. 20(2):213–8.
https://bioresearch.ro/2010-2/213-218
42. Videvall E., N. Sletvold, J. Hagenblad , J. Agren ,and B. Hansson .2016 Strong maternal effects on gene expression in arabidopsis lyrata hybrids. Mol Biol Evol. 33(4):984–94. https://doi.org/10.1093/molbev/msv342
43.Vo T.C., J.H. Mun ,H.J. Yu , Y.J. Hwang, M.Y. Chung , and C.K. Kim .2015 Phenotypic analysis of parents and their reciprocal F1 hybrids in Phalaenopsis. Hortic Environ Biotechnol. 56(5):612–7.
https://doi.org/10.1007/s13580-015-0063-8
44.Wang L., F.S. Gao ,K. Xu , and N. Xu .2013 Effects of fruit bag color on the micro environment, yield and quality of tomato fruits. Chinese J Appl Ecol.24(8):2229–34. https://doi.org/10.13287/j.1001- 9332.201308.017
45. Yordanov M. 1983 Heterosis in the Tomato. Monogr Theor Appl Genet. 6(1912):189–219.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.