MORPHOMETRIC ANALYSIS OF DUHOK WATERSHED
DOI:
https://doi.org/10.36103/tfayty62Keywords:
GIS Techniques, Areal aspect, Relief aspect, Linear aspectAbstract
This study was aimed to obtain morphometric parameters of Duhok watershed evaluated through three aspects. The area was located at Duhok governorate with covers 394.87Km2. Depending on stream orders, ten of sub-watersheds were extracted from the main watershed. Furthermore, Duhok watershed stream orders ranged from 1 to 6, as well as the total number of segmented stream reported for the total number of orders was (4175). The results of the current study indicate the Duhok watershed has a high relief ratio (0.026 m/km) and relative relief (0.95) which refers to steep slopes and excessive runoff. The ruggedness value is (4.09) indicates the study region is rugged with high density of streams also the low value of hypsometric integral (0.37) indicates the mature stage of watershed age. However, the watershed's flatter flow regime and elongated shape are confirmed by the values of form factor (0.23), elongation ratio (0.54), and circulation ratio (0.40). The watershed mean bifurcation ratio is 4.13, indicating significant structural disruption, while the value of stream frequency (10.69 streams/km2) suggests dense surface runoff and steeper topography. a very fine drainage texture (37.66) which leads to a higher risk of erosion. The findings of this study will be valuable in watershed management, water resources and protecting the environment in the future.
References
1. Artoshy, G.Y., 2017. Morphometric and Hydrometeorological Study of Dérké Valley Catchment, Duhok Governorate, using Remote Sensing and GIS Techniques (MSc Thesis). University of Duhok.
2. Aziz, N.A., Z.,Abdulrazzaq, and M.N Mansur,., 2020. GIS-based watershed morphometric analysis using DEM data in Diyala River, Iraq. Iraqi Geol. J. 36–49. https://doi.org/10.46717/igj.53.1C.3Rx-2020.04.03
3. Bisht, S., Chaudhry, S., Sharma, and S., Soni, 2018. Assessment of flash flood vulnerability zonation through Geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. Remote Sens. Appl. Soc. Environ. 12, 35–47. https://doi.org/10.1016/j.rsase.2018.09.001
4. Biswas, S., S.,Sudhakar, and Desai, V., 1999. Prioritisation of subwatersheds based on morphometric analysis of drainage basin: A remote sensing and GIS approach. J. Indian Soc. Remote Sens. 27: 155–166. 10.1007/BF02991569
5. Chandrashekar, H., K V, Lokesh and M, Sameena 2015. Int. Conf. on Water Resources, Coastal and Ocean Engineering (Mangalore) vol 4 ed G S Dwarakish (Elsevier Procedia) 1345 – 1353. https://doi.org/10.1016/j.aqpro.2015.02.175
6. Chorley, R.J., D.E.,Malm, and H.A., Pogorzelski, 1957. A new standard for estimating drainage basin shape. Am. J. Sci. 255, 138–141. https://doi.org/10.2475/ajs.255.2.138.
7.Clarke, J., 1966. Morphometry from maps. Essays Geomorphol. 252, 235–274.
8.Dahiphale, P., P., Singh, and K.,Yadav, 2014. Morphometric analysis of sub-basins in Jaisamand catchment using geographical information system. Int. J. Res. Eng. Technol.
9. Dimple, D., J., Rajput, N., Al-Ansari, A., Elbeltagi, B., Zerouali, and C.A.G., Santos, 2022. Determining the hydrological Behaviour of catchment Based on quantitative morphometric Analysis in the hard rock area of Nand Samand Catchment, Rajasthan, India. Hydrology 9, 31. https://doi.org/10.3390/hydrology9020031
10. Farhan, Y., A., Anbar, O., Enaba, and N., Al-Shaikh, 2015. Quantitative analysis of geomorphometric parameters of Wadi Kerak, Jordan, using remote sensing and GIS. J. Water Resour. Prot. 7, 456. 10.4236/jwarp.2015.76037
11. Gajbhiye, S., S., Mishra, and A., Pandey, 2014. Hypsometric analysis of Shakkar river catchment through geographical information system. J. Geol. Soc. India 84, 192–196.
12. Gebre, T., T., Kibru, S., Tesfaye, and G., Taye, 2015. Analysis of watershed attributes for water resources management using GIS: The case of Chelekot micro-watershed, Tigray, Ethiopia. J. Geogr. Inf. Syst. 7, 177. 10.4236/jgis.2015.72015
13. Hadley, R., and S.A., Schumm, 1961. Sediment sources and drainage basin characteristics in upper Cheyenne River basin. US Geol. Surv. Water-Supply Pap. 1531, 198.
14. Horton, R.E., 1945a. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Gsa Bull. 56, 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
15. Horton, R.E., 1932. Drainage-basin characteristics. Trans, Am. Geophys. Union 13,350,361. https://doi.org/10.1029/TR013i001p00350
16. Howard, A.D., 1967. Drainage analysis in geologic interpretation: a summation. AAPG Bull. 51: 2246–2259.
17. Huggett, R.J., 2016. Fundamentals of geomorphology. (4th ed.).
18. Janey V. Camp, E. B.Daniel, E J. LeBoeuf, J. R. Penrod, J. P. Dobbins, and M. D. Abkowitz 2011. Watershed modeling and its applications: A state-of-the-art review. The Open Hydrology Journal, 5(1): 26-5010.2174/1874378101105010026
19. Ibrahim, J.R., 2021. Morphometric relief aspects identification of Khabour river basin. QALAAI ZANIST Sci. J. 6, 1003–1027. https://doi.org/10.25212/lfu.qzj.6.2.37
20. Kanhaiya, S., B., Singh, S., Singh, P., Mittal, and V., Srivastava, 2019. Morphometric analysis, bedload sediments, and weathering intensity in the Khurar River Basin, central India. Geol. J. 54, 466–481. https://doi.org/10.1002/gj.3194
21. Kar, G., A., Kumar, and R., Singh, 2009. Spatial distribution of soil hydro-physical properties and morphometric analysis of a rainfed watershed as a tool for sustainable land use planning. Agric. Water Manag. 96, 1449–1459. https://doi.org/10.1016/j.agwat.2009.05.003
22.Khadri, S., and K., Moharir, 2013. Detailed morphometric analysis of Man River basin in Akola and Buldhana districts of Maharashtra, India using Cartosat-1 (DEM) data and GIS techniques. Int J Sci Eng Res 4, 832–861.
23. Kumari, P., R., Kumari, and D., Kumar, 2021. Geospatial approach to evaluate the morphometry of Sabarmati River Basin, India. Arab. J. Geosci. 14; 1–13.
10.1007/s12517-021-06577-7
24. Malik, M.I., M.S., Bhat, and N.A., Kuchay, 2011. Watershed based drainage morphometric analysis of Lidder catchment in Kashmir valley using geographical information system. Recent Res. Sci. Technol. 3, 118–126.
25. Monim H. Al-Jiboori, M. S. Wid, and Y. K. Al-Timimi. 2024. Correlation coefficient analysis between pm2.5 concentrations and some meteorological parameters in Iraq. Iraqi Journal of Agricultural Sciences, 55(4), 1292-1302. https://doi.org/10.36103/2twexb46
26. Melton, M.A., 1957. An analysis of the Relations Among Elements of Climate, Surface Properties, and Geomorphology. Columbia Univ. New York pp:
27. Miller, V.C., 1953. A Quantitative Geomorphic Study of Drainage Basin Characteristics in The Clinch Mountain Area Virginia and Tennessee. Columbia Univ New York. 10.1086/626413
28. Nag, S., and S., Chakraborty, 2003. Influence of rock types and structures in the development of drainage network in hard rock area. J. Indian Soc. Remote Sens. 31, 25–35.
29. Pike, R.J., and S.E., Wilson, 1971. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geol. Soc. Am. Bull. 82, 1079–1084. https://doi.org/10.1130/0016-7606(1971)82[1079:ERHIAG]2.0.CO;2
30. Rudraiah, M., S., Govindaiah, and S.S.,Vittala, 2008. Morphometry using remote sensing and GIS techniques in the sub-basins of Kagna river basin, Gulburga district, Karnataka, India. J. Indian Soc. Remote Sens. 36: 351–360. 10.1007/s12524-008-0035-x
31. Salim, J.I., 2020. Computerized morphometric characteristics of Gebel Watershed. Presented at the 2020 International Conference on Advanced Science and Engineering (ICOASE), IEEE, pp: 24–30. 10.1109/ICOASE51841.2020.9436619
32. Schumm, S.A., 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol. Soc. Am. Bull. 67: 597–646. https://doi.org/10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2
33. Shankar, S., and K., Dharanirajan, 2014. Drainage morphometry of flood prone rangat watershed, middle Andaman, India—A geospatial approach. Int J Innov Technol Explor Eng 3, 15–22.
34. Singh, S., and M., Singh, 1997. Morphometric analysis of Kanhar river basin. Natl. Geogr. J. India 43, 31–43.
35. Smith, K.G., 1950. Standards for grading texture of erosional topography. Am. J. Sci: 248; 655–668.
https://doi.org/10.2475/ajs.248.9.655
36. Strahler, A., 1964. Quantitative geomorphology of basin and channel networks: handbook of applied hydrology.
37. Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 38: 913–920. https://doi.org/10.1029/TR038i006p00913
38. Strahler, A.N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 63, 1117–1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
39. Strahler, A.N., and V., Chow, 1964. Handbook of applied hydrology. Quantitative geomorphology of drainage basins and channel networks.
40. Swati, Maurya, P. K. Srivastava, M. Gupta, T. Islam, and D. Han. 2016. Integrating soil hydraulic parameter and microwave precipitation with morphometric analysis for watershed prioritization. Water Resources Management, 30, 5385-5405. https://doi.org/10.1007/s11269-016-1494-4
41 Tignath, S., M., Kapoor, M., Jha, and S., Sharma, 2014. Morphometric analysis of part of the Hiran River, District Jabalpur, MP, India using Remote sensing and GIS. Int. J. Environ. Sci. 5: 181. 10.6088/ijes.2014050100016
42. Toma, J.J., 2013. Limnological study of Dokan, Derbendikhan and Duhok lakes, Kurdistan Region of Iraq. 10.4236/oje.2013.31003
43. Veeranna, J., K., Gouthami, P.B., Yadav, and V., Mallikarjun.a, 2017. Calculating linear and areal and relief aspect parameters using Geo-Spatial Techniques (ArcGIS 10.2 and SWAT model) for Akkeru River Basin Warangal. Int. J. Curr. Microbiol. Appl. Sci: 6, 1803–1809. 10.20546/ijcmas.2017.610.217
44. Vittala, S.S., S., Govindaiah, and H.H., Gowda, 2005. Evaluation of groundwater potential zones in the sub-watersheds of north pennar river basin around Pavagada, Karnataka, India using remote sensing and GIS techniques. J. Indian Soc. Remote Sens. 33, 483. 10.1007/BF02990733
45. ZINCK, J., 1980. Valles de Venezuela. El Hombre y su Ambiente. Petróleos de Caracas-Venezuela SA. Ed. Cuad. LagovenVenezuela p:150.
46. Yaseen K. A, and F. Y. Baktash. 2024. Monitoring the shift of rainfed line of 250 mm over Iraq. Iraqi Journal of Agricultural Sciences, 55(3), 931-940. https://doi.org/10.36103/h10cqh53
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.