QUANTITATIVE DETECTION OF MICRORNA-20A AMONG IRAQI COLORECTAL CANCER PATIENTS
DOI:
https://doi.org/10.36103/7rwkyr40Keywords:
CRC, RT-PCR, Expression Level, Biomarker.Abstract
This study aimed to investigate the expression level of microRNA-20a in plasma samples collected from 20 healthy males and 20 healthy females' as non-cancerous controls, 34 males and 26 females who diagnosed with CRC, the age range for both poles was at age range of 23 to 66 years old, those patients didn’t receive any chemical, radiological or surgical treatment and subjected to relative quantitative detection using RT-PCR technique. Specific primers designed for this purpose, the sequence of miR-20a retrieved from NCBI and miRBASE, the primers designed using stem-loop structure method, RNU-43 reference gene used for results normalization. The resulted data analyzed using the Livak method, the folding mean of CRC patients (12.78) was higher than the folding level of non-cancerous controls (1.6909), 28 patients were had higher folding levels than the mean of the controls while 32 patients were below the non-cancerous controls folding mean. Among 60 patients, 22 samples were had expression levels less than 1 folding level, 11 samples had expression levels less than 2 folding levels, 12 samples quantified folding less than 5 folding levels, 8 samples were less than 20 folding levels, and 7 samples with higher 20 folding level, such results indicated that the expression level of microRNA-20a is changed and dose not remain consistent in colorectal cancer patients, with varied quantified results due to different factors. No considerable statistical relevance to age and gender was revealed since P values were greater than 0.05 level in Students-t-test and ANOVA test.
References
1. Abdullah, D., and R M. Aloubaidy 2022. Genetic polymorhism of caspase 8 and 9 in Iraq. Iraqi Journal of Agricultural Sciences, 53(3): 505–514. https://doi.org/10.36103/ijas.v53i3.1558
2. Aghdam, A.M., Amiri, A., Salarinia, R., Masoudifar, A., Ghasemi, F., and Mirzaei, H. 2019. MicroRNAs as diagnostic, prognostic, and therapeutic biomarkers in prostate cancer. Crit Rev Eukaryot Gene Expr, 29(2): 127-139. https://doi.org/10.1615/critreveukaryotgeneexpr.2019025273
3. Ammar, K. A., A. . and M. F. Altaee. 2022. Recurrent of tmprss2 genetic polymorphism and its role in Iraqi patients with prostate cancer. Iraqi Journal of Agricultural Sciences, 53(2): 272–277. https://doi.org/10.36103/ijas.v53i2.1534
4Ammar, A. K., and M. F. Altaee. 2022. Correlation of TMPRSS2-ERG gene fusion status with clinicopathological characteristics in prostate cancer of Iraqi patients. Iraqi Journal of Agricultural Sciences, 53(3): 487–495. https://doi.org/10.36103/ijas.v53i3.1556
5. Cheng, D., Zhao, S., Tang, H., Zhang, D., Sun, H., Yu, F., Jiang, W., Yue, B., Wang, J., Zhang, M., Yu, Y., Liu, X., Sun, X., Zhou, Z., Qin, X., Zhang, X., Yan, D., Wen, Y., and Peng, Z. 2016. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget, 7(29): 45199–45213. https://doi.org/10.18632/oncotarget.9900
6. Del Cornò, M., Donninelli, G., Conti, L., and Gessani, S. 2017. Linking diet to colorectal cancer: The emerging role of microRNA in the communication between plant and animal kingdoms. Front Microbiol, 8: 597. https://doi.org/10.3389/fmicb.2017.00597
7. Duy, J., Koehler, J., Honko, A.N., and Minogue, T.D. 2015. Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics, 16(1): 95. https://doi.org/10.1186/s12864-015-1299-5
8. Eslamizadeh, S., Heidari, M., Agah, S., Faghihloo, E., Ghazi, H., Mirzaei, A., and Akbari, A. 2018. The role of microRNA signature as diagnostic biomarkers in different clinical stages of colorectal cancer. Cell Journal, 20(2): 220–230. https://doi.org/10.22074/cellj.2018.5366
9. Fadaka, A.O., Ojo, B.A., Adewale, O.B., Esho, T., and Pretorius, A. 2018. Effect of dietary components on miRNA and colorectal carcinogenesis. Cancer Cell Int, 18: 130. https://doi.org/10.1186/s12935-018-0631-y
10. Fani, M., Zandi, M., Ebrahimi, S., Soltani, S., and Abbasi, S. 2021. The role of miRNAs in COVID-19 disease. Future Virology, 16(4): 301–306.
https://doi.org/10.2217%2Ffvl-2020-0389
11. Guo, R., Fan, G., Zhang, J., Wu, C., Du, Y., Ye, H., Li, Z., Wang, L., Zhang, Z., Zhang, L., Zhao, Y., and Lu, Z.A. 2017. A 9-microRNA Signature in Serum Serves as a Noninvasive Biomarker in Early Diagnosis of Alzheimer's Disease. J Alzheimers Dis, 60(4): 1365–1377.
https://doi.org/10.3233/jad-170343
12. He, B., Zhao, Z., Cai, Q., Zhang, Y., Zhang, P., Shi, S., Xie, H., Peng, X., Yin, W., Tao, Y., and Wang, X. 2020. miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci, 16(14): 2628–2647. https://doi.org/10.7150/ijbs.47203
13. Hum, C., Loiselle, J., Ahmed, N., Shaw, T.A., Toudic, C., and Pezacki, J.P. 2021. MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19. Drugs, 81(5): 517–531. https://doi.org/10.1007/s40265-021-01474-5
14. Iwasaki, Y.W., Kiga, K., Kayo, H., Fukuda-Yuzawa, Y., Weise, J., Inada, T., Tomita, M., Ishihama, Y., and Fukao, T. 2013. Global microRNA elevation by inducible Exportin 5 regulates cell cycle entry. RNA (New York, N.Y.), 19(4): 490–497. https://doi.org/10.1261/rna.036608.112
15. Kadhim, R. I., and E. D. Salman. 2022. Genetic variability in the PRNCR1 gene among a sample of Iraqi prostate cancer patients. Iraqi Journal of Agricultural Sciences, 53(3): 515–521. https://doi.org/10.36103/ijas.v53i3.1559
16. Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. 2019. miRBase: from microRNA sequences to function. Nucleic Acids Research, 47(D1): D155–D162. https://doi.org/10.1093/nar/gky1141
17. Kundaktepe, B.P., Sozer, V., Papila, C., Durmus, S., Kocael, P.C., Simsek, G., Gelisgen, R., Zengin, K., Ulualp, K., and Uzun, H. 2020. Associations between miRNAs and two different cancers: Breast and colon. Cancer Manag Res, 12: 871–879. https://doi.org/10.2147/cmar.s227628
18. La Torre, A., Georgi, S., and Reh, T.A. 2013. Conserved microRNA pathway regulates developmental timing of retinal neurogenesis. Proc Natl Acad Sci U S A, 110(26): E2362-70. https://doi.org/10.1073/pnas.1301837110
19. Landrier, J.F., Derghal, A., and Mounien, L. 2019. MicroRNAs in obesity and related metabolic disorders. Cells, 8(8): 859. https://doi.org/10.3390/cells8080859
20. Li, R., Qian, N., Tao, K., You, N., Wang, X., and Dou, K. 2010. MicroRNAs involved in neoplastic transformation of liver cancer stem cells. Journal of Experimental & Clinical Cancer Research, 29(1): 169. https://doi.org/10.1186/1756-9966-29-169
21. Li, S., Qiang, Q., Shan, H., Shi, M., Gan, G., Ma, F., and Chen, B. 2016. MiR-20a and miR-20b negatively regulate autophagy by targeting RB1CC1/FIP200 in breast cancer cells. Life Sci, 147: 143–152. https://doi.org/10.1016/j.lfs.2016.01.044
22. Li, Z., Xu, R., and Li, N. 2018. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab (Lond), 15: 68. https://doi.org/10.1186%2Fs12986-018-0311-x
23. Lou, S., Sun, T., Li, H., and Hu, Z. 2018. Mechanisms of microRNA-mediated gene regulation in unicellular model alga Chlamydomonas reinhardtii. Biotechnol Biofuels, 11: 244. https://doi.org/10.1186/s13068-018-1249-y
24. Lujambio, A., and Lowe, S. W. 2012. The microcosmos of cancer. Nature, 482(7385): 347–355. https://doi.org/10.1038/nature10888
25. MacDonald-Ramos, K., Martínez-Ibarra, A., Monroy, A., Miranda-Ríos, J., and Cerbón, M. 2021. Effect of dietary fatty acids on microRNA expression related to metabolic disorders and inflammation in human and animal trials. Nutrients, 13(6): 1830. https://doi.org/10.3390/nu13061830
26. Mohr, A. M. and Mott, J. L. 2015. Overview of microRNA biology. Semin Liver Dis, 35(1): 3–11.
https://doi.org/10.1055/s-0034-1397344
27. Moody, L., Dvoretskiy, S., An, R., Mantha, S., and Pan, Y.X. 2019. The efficacy of miR-20a as a diagnostic and prognostic biomarker for colorectal cancer: A systematic review and meta-analysis. Cancers (Basel), 11(8): 1111. https://doi.org/10.3390%2Fcancers11081111
28. Moradi-Marjaneh, R., Hassanian, S.M., Mehramiz, M., Rezayi, M., Ferns, G.A., Khazaei, M., and Avan, A. 2019. Reactive oxygen species in colorectal cancer: The therapeutic impact and its potential roles in tumor progression via perturbation of cellular and physiological dysregulated pathways. J Cell Physiol, 234(7): 10072–10079. https://doi.org/10.1002/jcp.27881
29. Natarajan, S.K., Smith, M.A., Wehrkamp, C.J., Mohr, A.M., and Mott, J.L. 2013. MicroRNA function in human diseases. Med Epigenet, 1: 106–115. https://doi.org/10.1159/000356447
30. Nikolaou, S., Qiu, S., Fiorentino, F., Rasheed, S., Tekkis, P., and Kontovounisios, C. 2018. Systematic review of blood diagnostic markers in colorectal cancer. Tech. Coloproctol, 22: 481–498. https://doi.org/10.1007/s10151-018-1820-3
31. Pesta, M., Kucera, R., Topolcan, O., Karlikova, M., Houfkova, K., Polivka, J., Macanova, T., Machova, I., Slouka, D., and Kulda, V. 2019. Plasma microRNA levels combined with CEA and CA19-9 in the follow-up of colorectal cancer patients. Cancers, 11(6): 864. https://doi.org/10.3390%2Fcancers11060864
32. Shirafkan, N., Mansoori, B., Mohammadi, A., Shomali, N., Ghasbi, M., and Baradaran, B. 2018. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother, 97: 1319–1330. https://doi.org/10.1016/j.biopha.2017.11.046
33. Siegel, R.L., Miller, K.D., and Jemal, A. 2015. Cancer statistics, 2015. Ca-Cancer J Clin, 65(1): 5–29. https://doi.org/10.3322/caac.21254
34. Trakunram, K., Champoochan, N., Chaniad, P., Thongsuksai, P., and Raungrut, P. 2019. MicroRNA isolation by Trizol-based method and its stability in stored serum and cDNA derivatives. Asian Pacific Journal of Cancer Prevention, APJCP, 20(6): 1641–1647. https://doi.org/10.31557%2FAPJCP.2019.20.6.1641
35. Ulivi, P., Canale, M., Passardi, A., Marisi, G., Valgiusti, M., Frassineti, G.L., Calistri, D., Amadori, D., and Scarpi, E. 2018. Circulating plasma levels of miR-20b, miR-29b and miR-155 as predictors of bevacizumab efficacy in patients with metastatic colorectal cancer. Int. J. Mol. Sci, 19: 307. https://doi.org/10.3390/ijms19010307
36. Zhang, Y., Zheng, L., Ding, Y., Li, Q., Wang, R., Liu, T., Sun, Q., Yang, H., Peng, S., Wang, W., and Chen, L. 2015. MiR-20a induces cell radioresistance by activating the PTEN/PI3K/Akt signaling pathway in hepatocellular carcinoma. Int J Radiat Oncol Biol Phys, 1; 92(5): 1132–1140. https://doi.org/10.1016/j.ijrobp.2015.04.007
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.