EVALUATION OF ANTIBACTERIAL ACTIVITY OF NICKEL OXIDE NANOPARTICLES AGAINST ESCHERICHIA COLI

Authors

  • H. O. Ahmed
  • L. A. Yaaqoob

DOI:

https://doi.org/10.36103/aws0zt84

Keywords:

biofilm, antimicrobial activity, pyocyanin, E.coli, Nickel oxide nanoparticles (NiO NPs).

Abstract

The study's goals are to use pyocyanin pigment produced by the clinical isolate Pseudomonas aeruginosa as a reducing and stabilizing agent for nickel oxide nanoparticles (NiO NPs) and their use it antibacterial agents against biofilm-producing, multidrug-resistant Escherichia coli isolated from various clinical sources. The antibiotic susceptibility test of E. Coli isolates was shown to be resistant to ceftriaxone, cotrimoxazole, piperacillin-triazole, tetracycline, and ticarcillin, while sensitive to Amikacin, Amoxicillin, Nitrofurantoin, and Imipenem. NiO NPs are synthesized by using nickel sulfate NiSO4 (10g) with a concentration of pyocyanin (10mg/10ml). The NiO NPs synthesized were characterized by various techniques such as AFM, UV-VIS, and FTIR. The result showed that the wavelength of NiO was 211nm and the average diameter of NiO was 63.59 nm, and the concentration of NiO NPs was 0.5 mg/ml, showing that the maximum inhibition zones of E.coli were 22 mm. Biosynthesis of NiO NPs using pyocyanin was shown to have promising activity as an antibacterial against the biofilm-producing E. coli.

References

1. Al-Jubouri, A. K. ., N. H. Al-Saadi , and M. A. Kadhim, 2022. Green synthesis of copper nanoparticles from myrtus communis leaves extract: characterizattion, antioxidant and catalytic activity. Iraqi Journal of Agricultural Sciences, 53(2), 471-486. https://doi.org/10.36103/ijas.v53i2.155

2. Aljahani, A., K. Alarjani, Z. Hassan, M. Elkhadragy, E. Ismail, A. Al-Masoud, and H. Yehia, 2020. Molecular detection of methicillin heat-resistant Staphylococcus aureus strains in pasteurized camel milk in Saudi Arabia. Bioscience Reports, 40(4).

3. Ahmed, M. H., Z. S. Omran, and A. G. Oraibi. 2024. Increasing some flavonoids compounds for echinacea purpurea L. using copper oxide nanoparticles in vitro. Iraqi Journal of Agricultural Sciences, 55(2), 733-743. https://doi.org/10.36103/v5q3fg20

4. Belkaid, Y. and T. Hand, 2014. Role of the Microbiota in Immunity and Inflammation. Cell, 157(1):121-141.

5. Chen, Y., N. Feng, Q. Ji., Y. Zhang, W. Li and J. Wang, 2021 Space Environment and Charge Characteristics of Flexible Second-surface Mirrors Gaodianya Jishu/High Voltage Engineering, Volume 47, Issue 7:201-255

6. Djordjevic, D., M. Wiedmann, and L. McLandsborough, 2002. Microtiter Plate Assay for Assessment of Listeria monocytogenes Biofilm Formation. Applied and Environmental Microbiology, 68(6),2950-2958.

7. El-Kemary, M., N. Nagy, and I. El-Mehasseb, 2013. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing, 16(6):1747-1752.

8. El-Fouly, M. Z., A. M. Sharaf, A. A. M. Shahin, Heba A. El-Bialy, and A. M. A. Omara. 2015. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. Journal of Radiation Research and Applied Sciences, 8(1), 36-48. https://doi.org/10.1016/j.jrras.2014.10.007

9. Elden, M. A., and L. A. Yaaqoob. 2022. Evaluation of the biological effect synthesized zinc oxide nanoparticles on pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences, 53(1), 27-37. https://doi.org/10.36103/ijas.v53i1.1502

10. El-Fouly, M.Z., A.M. Sharaf, A.A.M. Shahin, Heba A. El-Bialy, and A.M.A. Omara, 2015 Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa, Journal of Radiation Research and Applied Sciences, 8,( 1), : 36-48.

11. Mirzaei, R., R. Mohammadzadeh, M. Y. Alikhani, M. Shokri Moghadam, S. Karampoor, S. Kazemi, and R. Yousefimashouf, 2020. The biofilm‐associated bacterial infections unrelated to indwelling devices. IUBMB life, 72(7):1271-1285.

12. Mohamad S. M. and Atif, W. Sandhanasamy Devanesan, 2020 Synthesis of NiO nanoparticles and their evaluation for photodynamic therapy against HeLa cancer cells, Journal of King Saud University - Science, 32( 2):1395-1402.

13. Nawas, T., 2018. Extraction and purification of pyocyanin: a simpler and more reliable method. MOJ Toxicology, 4(6):1102-1406

14. Nirmala, M. J., P. J. Shiny, V. I. N. I. T. A. Ernest, S. P. Das, A. Samundeeswari, A. M. I. T. A. V. A. Mukherjee, and N. Chndrasekaran, 2013. A review on safer means of nanoparticle synthesis by exploring the prolific marine ecosystem as a new thrust area in nanopharmaceutics. Int. J. Pharm. Sci, 5, 23- 29

15. Roy, R., M. Tiwari, G. Donelli, and V. Tiwari, 2018. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1):522-554.

16. Saleem, S., B. Ahmed, M. Khan, Al-Shaeri, and J. Musarrat, 2017. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microbial Pathogenesis, 111:.375-387.

17. Schulze, A., F. Mitterer, J. Pombo and S. Schild ,2021. Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. Microbial Cell, 8(2):28-56.

18. Sharma, G., S. Sharma, P. Sharma, D. Chandola, S. Dang, S. Gupta and R. Gabrani, 2016. Escherichia coli biofilm: development and therapeutic strategies. Journal of Applied Microbiology, 121(2):309-319.

19. Yaaqoob, l. A. 2022. Evaluation of the biological effect synthesized iron oxide nanoparticles on enterococcus faecalis. Iraqi Journal of Agricultural Sciences, 53(2), 440-452. https://doi.org/10.36103/ijas.v53i2.1552

20. Srihasam, S., K. Thyagarajan, M. Korivi., V. Lebaka, and S. Mallem, 2020. Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their In-Vitro antioxidant and antimicrobial aroperties. Biomolecules, 10(1):89.

21. Williams, R. P., C. L. Gott,and J. A. Green, 1961. Studies on pigmentation of serratia marcescens V.: Accumulation of pigment fractions with respect to length of incubation time1. Journal of bacteriology, 81(3), 376:722-735

22. Wu, S. H., and D. H. Chen 2003. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. Journal of Colloid and Interface Science, 259(2), 282-286.‏

23. Sadrolhosseini, A. R., M. Naseri, and S. A. Rashid, 2017. Polypyrrole-chitosan/nickel-ferrite nanoparticle composite layer for detecting heavy metal ions using surface plasmon resonance technique. Optics & laser technology, 93, 216-223.

24. Hall, S., C. McDermott., S. Anoopkumar-Dukie., A. McFarland., A. Forbes., A. Perkins., A. Davey., R. Chess-Williams., M. Kiefel., D. Arora and G. Grant., 2016. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins, 8(8).236.

25. Hamza, M. R., and L. A. Yaaqoob, 2020. Evaluation the effect of green synthesis titanium dioxide nanoparticles on Acinetobacter baumannii isolates. Iraqi Journal of Agricultural Sciences, 51(6), 1486-1495.

Downloads

Published

2025-02-25

Issue

Section

Articles

How to Cite

H. O. Ahmed, & L. A. Yaaqoob. (2025). EVALUATION OF ANTIBACTERIAL ACTIVITY OF NICKEL OXIDE NANOPARTICLES AGAINST ESCHERICHIA COLI. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(1), 502-511. https://doi.org/10.36103/aws0zt84

Similar Articles

11-20 of 284

You may also start an advanced similarity search for this article.