EFFECT OF COMBINING LEUCAENA AND INDIGOFERA LEAVES IN SWAMP GRASS-BASED DIETS ON DIGESTIBILITY, RUMEN FERMENTABILITY AND METHANOGENESIS

Authors

  • Riswandi
  • A. I. M. Ali
  • Muhakka

DOI:

https://doi.org/10.36103/kk0g8487

Keywords:

methane, legumes, swamp grass

Abstract

This research was conducted to evaluate the effect of the combination of Leucaena and Indigofera in swamp grass-based rations on the quality or quantity of feed produced. The research was carried out based on a completely randomized design (CRD) consisting of four treatments and four replications. The types of forage used include termite Bento grass (Leersia hexandra) from swamp land; legumes Leucaena and Indigofera. The treatments consisted of A = swamp grass and concentrate (70%:30%), B = swamp grass, Leucaena and concentrate (40%:30%:30%), C = swamp grass, Indigofera and concentrate (40%:30%:30%), D = swamp grass, Leucaena, Indigofera and concentrate (40%:15%:15%:30%). The observed variables consisted of dry matter digestibility (DMD), pH, total Volatile Fatty Acid (TVFA), N-ammonia (N-NH3), partial VFA, methane gas, total bacteria and protozoa. The study showed that the combination of tree legumes increased (P<0.05) the digestibility values of DM, TVFA, propionic acid, butyrate and total bacteria, while the levels of N-NH3, acetic acid, acetate-propionate ratio, methane gas, methane gas production and protozoa decreased (P<0.05). Based on the results of the study, it can be concluded that the combination of tree legumes in the ration can increase digestibility, improve rumen fermentation characteristics and reduce methane gas production.

References

1.Addisu, S. 2016 Effect of Dietary Tannin Source Feeds on Ruminal Fermentation and Production of Cattle; a Review. Online J. Anim. Feed Res., 6 (2): 45–56.

2.Ali, A. I. M., Sandi, S., Muhakka, Riswandi, and Budianta, D. 2014 The Grazing of Pampangan Buffaloes at Non Tidal Swamp in South Sumatra of Indonesia. APCBEE Procedia, 8 (CAAS 2013): 87–92.

3.Amole, T. A., and Ayantunde, A. A. 2016 Assessment of existing and potential feed resources for improving livestock productivity in Niger. Int. J. Agric. Res., 11 (2): 40–55.

4.Ampapon, T., Haitook, T., and Wanapat, M. 2022 Enhancing Rumen Fermentation Characteristic and Methane Mitigation Using Phytonutrient Pellet in Beef Cattle. Fermentation, 8 (5): 2–11.

DOI: 10.3390/fermentation8040095

5.AOAC. 2005 Official Methods of Analysis of AOAC INTERNATIONAL. 18th ed. AOAC International: Gaithersburg, MD.

6.Arora, S. P., Srigandono, B., and Murwani, R. 1995 Pencernaan mikroba pada ruminansia. Gadjah Mada University Press.

7.Dey, A., Paul, S. S., Umakanth, A. V., Bhat, B. V., Lailer, P. C., and Dahiya, S. S. 2020 Nutritional potential, in vitro ruminal fermentation kinetics and methanogenesis of stover from newer cultivars of sorghum (Sorghum bicolor) in buffalo. Anim. Prod. Sci., (July). DOI: 10.1071/AN19502

8.Fattah, A. H., Syamsu, J. A., Natsir, A., and Garantjang, S. 2019 VFA Concentration, Ammonia And pH Value In Vivo Ransum Rument System Made From Rice Fermentation Of Lamtoro Leaves, Gamal Leaves And Indigofera Leaves. Adv. Environ. Biol., 13 (12): 4–9.

9.Galyean, M. L. 2010 Laboratory procedure in animal nutrition research. 14th ed. Texas Tech University, Lubbock: Texas.

10.Gonzalez-Garcia, R. A., McCubbin, T., Navone, L., Stowers, C., Nielsen, L. K., and Marcellin, E. 2017 Microbial propionic acid production. Fermentation, 3 (2): 1–20.

DOI: 10.3390/fermentation3030043

11.Jayanegara, A., Makkar, H. P. S., and Becker, K. 2015 Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in Vitro. Media Peternak., 38 (1): 57–63.

12.Jayanegara, A., Wina, E., and Takahashi, J. 2014 Meta-analysis on methane mitigating properties of saponin-rich sources in the Rumen: Influence of addition levels and plant sources. Asian-Australasian J. Anim. Sci., 27 (10): 1426–1435.

DOI: 10.5713/ajas.2014.1429

13.Jayanegara, A., Yogianto, Y., Wina, E., Sudarman, A., Kondo, M., Obitsu, T., and Kreuzer, M. 2020 Combination effects of plant extracts rich in Tannins and Saponins as feed additives for mitigating in vitro ruminal Methane and Ammonia formation. Animals, 10 (9): 1–14. DOI: 10.3390/ani10101747

14.Lemosquet, S., Delamaire, E., Lapierre, H., Blum, J. W., and Peyraud, J. L. 2009 Effects of glucose, propionic acid, and nonessential amino acids on glucose metabolism and milk yield in Holstein dairy cows. J. Dairy Sci., 92 (7): 3244–3257. DOI: 10.3168/jds.2009-2382

15.Magdalena, S., GH, N., Nailufar F, and Purwadaria T. 2013 Utilization f Natural Products As Functional FeED. Wartazoa, 23 (1): 31–40.

16.Makkar, H. P. S. 2003 Treatment of Plant Material, Extraction of Tannins, and an Overview of Tannin Assays Presented in the Manual.

17.Martin, C., Morgavi, D. P., and Doreau, M. 2010 Methane mitigation in ruminants: From microbe to the farm scale. Animal, 4 (3): 351–365. DOI: 10.1017/S1751731109991043

18.McDonald, P., Edwards, R. A., Grennhalgh, J. F. D., Morgan, C. A., Sinclair, L. A., and Wilkinson, R. G. 2022 Animal Nutrition 8th Edition. 8th ed. Pearson: Harlow, England; New York.

19.Miguel, M., Mamuad, L., Ramos, S., Ku, M. J., Jeong, C. D., Kim, S. H., Cho, Y. Il, and Lee, S. S. 2021 Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population. Anim. Biosci., 34 (4): 642–651.

DOI: 10.5713/ajas.20.0757

20.Mijena, D., and Getiso, A. Journal of Aquaculture & Livestock Feeding and Nutritional Strategies to Reduce Methane Emission from Large Ruminants : Review. 2 (1): 1–9.

21.National Research Council. 1977 Leucaena. National Academies Press: Washington, D.C.

22.Ningrat, R. W. S., Zain, M., Erpomen, Putri, E. M., and Makmur, M. 2019 Effects of Leucaena leucocephala supplementation to total mixed ration based on ammoniated rice straw onfiber digestibility and rumen fermentation characteristics in vitro. Int. J. Adv. Sci. Eng. Inf. Technol., 9 (3): 916–921. DOI: 10.18517/ijaseit.9.3.2493

23.Noviandi, C. T., Kustaantinah, K., Irawan, A., Widyobroto, B. P., and Astuti, A. 2021 Determination of in vitro Gas Production Kinetics by Adding Leucaena leucecophala and Corn Oil to the Ration in Different Ratios. Iran. J. Appl. Anim. Sci., 11 (1): 23–31. DOI: 10.22059/ijap.2021.322444.748

24.Palangi, V., Taghizadeh, A., Abachi, S., and Lackner, M. 2022 Strategies to Mitigate Enteric Methane Emissions in Ruminants: A Review. Sustain., 14 (20): 1–15.

DOI: 10.3390/su142012698

25.Palupi, R., Abdullah, L., Astuti, D. A., and . S. 2014 High Antioxidant Egg Production Through Substitution of Soybean Meal by Indigofera sp., Top Leaf Meal in Laying Hen Diets. Int. J. Poult. Sci., 13 (4): 198–203.

26.Paswan, V. K., Kumar, K., and Shehata, A. M. 2022 Rumen Microbiology and Microbial Degradation of Feedstuffs BT - Animal Manure: Agricultural and Biotechnological Applications. In Mahajan, S., Varma, A., Eds., Springer International Publishing: Cham, pp 45–60.

27.Patra, A. K., Kamra, D. N., and Agarwal, N. 2010 Effects of extracts of spices on rumen methanogenesis, enzyme activities and fermentation of feeds in vitro. J. Sci. Food Agric., 90 (3): 511–520.

DOI: 10.1002/jsfa.3937

28.Pazla, R., Jamarun, N., Zain, M., and Arief. 2018 Microbial protein synthesis and in vitro fermentability of fermented oil palm fronds by phanerochaete chrysosporium in combination with tithonia (Tithonia diversifolia) and elephant grass (pennisetum purpureum). Pakistan J. Nutr., 17 (10): 462–470. DOI: 10.3923/pjn.2018.462.470

29.Ramírez-Restrepo, C. A., Tan, C., O’Neill, C. J., López-Villalobos, N., Padmanabha, J., Wang, J., and McSweeney, C. S. 2016 Methane production, fermentation characteristics, and microbial profiles in the rumen of tropical cattle fed tea seed saponin supplementation. Anim. Feed Sci. Technol., 216: 58–67.

DOI: 10.1016/j.anifeedsci.2016.04.005

30.Ranaei, V., Pilevar, Z., Khaneghah, A. M., and Hosseini, H. 2020 Propionic acid: Method of production, current state and perspectives. Food Technol. Biotechnol., 58 (2): 115–127. DOI: 10.17113/ftb.58.02.20.6385

31.Ranathunga, S. D., Kalscheur, K. F., and Herrick, K. J. 2019 Ruminal fermentation, kinetics, and total-tract digestibility of lactating dairy cows fed distillers dried grains with solubles in low- and high-forage diets. J. Dairy Sci., 102 (9): 7980–7996.

DOI: 10.3168/jds.2018-15763

32.Ribeiro, R. S., Terry, S. A., Sacramento, J. P., Silveira, S. R. E., Bento, C. B. P., Da Silva, E. F., Mantovani, H. C., Da Gama, M. A. S., Pereira, L. G. R., Tomich, T. R., Maurício, R. M., and Chaves, A. V. 2016 Tithonia diversifolia as a supplementary feed for dairy cows. PLoS One, 11 (12): 1–18.

DOI: 10.1371/journal.pone.0166974

33.Riswandi, Ali, A. I. M., Muhakka, Syaifudin, Y., and Akbar, I. 2015 Nutrient digestibility and productivity of bali cattle fed fermented Hymenachne Amplexiacalis based rations supplemented with Leucaena Leucocephala. Media Peternak., 38 (3): 156–162.

34.Riswandi, R., Aim, A., Muhakka, M., Imsya, A., and Wijaya, A. 2023 The Effect of Swamp Forages Combination in Rations on Rumen Fermentability Characteristics and In Vitro Methane Production. Adv. Anim. Vet. Sci., 11 (4): 672–678.

35.Riswandi, R., Priyanto, L., Imsya, A., and Nopiyanti, M. 2017 In Vitro Digestibility of Fermented Hymenacne Acutigluma-Based Rations Supplemented with Different Legumes. J. Vet., 18 (2): 303.

36.Rufino-Moya, P. J., Blanco, M., Bertolín, J. R., and Joy, M. 2019 Effect of the method of preservation on the chemical composition and in vitro fermentation characteristics in two legumes rich in condensed tannins. Anim. Feed Sci. Technol., 251 (October 2018): 12–20.

37.Sari, R. M., Zain, M., Jamarun, N., Ningrat, R. W. S., Elihasridas, and Putri, E. M. 2022 Improving Rumen Fermentation Characteristics and Nutrient Digestibility by Increasing Rumen Degradable Protein in Ruminant Feed using Tithonia diversifolia and Leucaena leucocephala. Int. J. Vet. Sci., 11 (3): 353–360.

38.Solomon, R., Wein, T., Levy, B., Eshed, S., Dror, R., Reiss, V., Zehavi, T., Furman, O., Mizrahi, I., and Jami, E. 2022 Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem. ISME J., 16 (4): 1187–1197.

DOI: 10.1038/s41396-022-01187-7

39.Steel, R. G. D., and Torrie, J. H. 1980 Principles and procedures of statistics. McGraw-Hill: New York.

40.Tan, H. Y., Sieo, C. C., Abdullah, N., Liang, J. B., Huang, X. D., and Ho, Y. W. 2011 Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim. Feed Sci. Technol., 169 (3–4): 185–193.

DOI: 10.1016/j.anifeedsci.2011.06.008

41.Thakur, A., Sharma, V., and Thakur, A. 2019 An overview of anti-nutritional factors in food. Int. J. Chem. Stud., 7 (1): 2472–2479.

42.Theodorou, M. K., Williams, B. A., Dhanoa, M. S., McAllan, A. B., and France, J. 1994 A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol., 48 (3–4): 185–197.

DOI: 10.1016/0377-8401(94)90006-3

43.Valenzuela-Grijalva, N. V., Pinelli-Saavedra, A., Muhlia-Almazan, A., Domínguez-Díaz, D., and González-Ríos, H. 2017 Dietary inclusion effects of phytochemicals as growth promoters in animal production. J. Anim. Sci. Technol., 59 (1): 1–17. DOI: 10.1186/s40781-017-0135-x

44.Van Soest, P. J. 1988 Nutritional ecology of the ruminant : ruminant metabolism, nutritional strategies, the cellulolytic fermentation and the chemistry of forages and plant fibers. Comstock Pub. Associates: Ithaca [N.Y.].

45.Wang, L., Li, Y., Zhang, Y., and Wang, L. 2020 The effects of different concentrate-to-forage ratio diets on rumen bacterial microbiota and the structures of holstein cows during the feeding cycle. Animals, 10 (6): 1–17. DOI: 10.3390/ani10060922

46.Williams, C. L., Thomas, B. J., McEwan, N. R., Rees Stevens, P., Creevey, C. J., and Huws, S. A. 2020 Rumen Protozoa Play a Significant Role in Fungal Predation and Plant Carbohydrate Breakdown. Front. Microbiol., 11 (April): 1–14.

DOI: 10.3389/fmicb.2020.00486

47.Yuliana, P., Laconi, E. B., Wina, E., and Jayanegara, A. 2014 Extraction of tannins and saponins from plant sources and their effects on in vitro methanogenesis and rumen fermentation. J. Indones. Trop. Anim. Agric., 39 (2): 91–97.

48.Zain, M., Putri, E. M., Rusmana, W. S. N., Erpomen, and Makmura, M. 2020 Effects of supplementing Gliricidia sepium on ration based ammoniated rice straw in ruminant feed to decrease methane gas production and to improve nutrient digestibility (in-vitro). Int. J. Adv. Sci. Eng. Inf. Technol., 10 (2): 724–729.

Downloads

Published

2025-02-25

Issue

Section

Articles

How to Cite

Riswandi, A. I. M. Ali, & Muhakka. (2025). EFFECT OF COMBINING LEUCAENA AND INDIGOFERA LEAVES IN SWAMP GRASS-BASED DIETS ON DIGESTIBILITY, RUMEN FERMENTABILITY AND METHANOGENESIS. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(1), 391-401. https://doi.org/10.36103/kk0g8487

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.