IMPACT OF FOLIAR APPLICATION OF POLYAMINE AND IRON SULPHAT ON GROWTH AND FLOWERING OF SNAPDRAGON (Antirrhinum majus L)

Authors

  • M. N. Muslim
  • A. N. Badri
  • H. A. Hadi

DOI:

https://doi.org/10.36103/9y1m3e73

Keywords:

Plant height, Peat moss, Chlorophyll content in leaves, carbohydrates percentage in leaves

Abstract

 This experiment was conducted during 2022-2023 season in private nursery. The aim of the study was to assess the effects of foliar spraying with polyamine and iron sulphate on growth and flowering of the snapdragon plant, Antirrhinum majus L. The experiment focused on two factors. The first factor involved foliar spraying with polyamine at concentrations of 0, 5, 10, and 15 mg.L-1, The plants were treated with polyamine through two rounds of spraying, 15 and 25 days after planting. The second factor involved foliar spraying with iron sulphate at concentrations of 0, 0.1, 0.2, and 0.4 g.L-1 through two rounds 15 and 25 days after planting. The study followed a factor experiment design (4×4) based on the Randomised Complete Block Design (RCBD). The research commenced by sowing seeds in cork dishes filled with Peat moss. After two weeks of planting, the plants were fertilized with a chemical fertilizer at a concentration of 2 g.L-1. The findings indicated that applying polyamine through foliar spraying at a concentration of 15 mg.L-1, along with iron sulphate at a concentration of 0.4 g.L-1, had a notable impact on the vegetative and flowering growth traits. These included plant height, chlorophyll content in leaves, and carbohydrates percentage in leaves

References

1. Abbasi, N. A., I. Ali, I. A. Hafiz, and A. S. Khan, 2017. Application of polyamines in horticulture: A review. International Journal of Biosciences, 10(5): 319-342.

http://dx.doi.org/10.12692/ijb/10.5.319-342

2. AL-Rahman S. A., and N. M. Alwan. 2024. The effect of spraying chelated calcium and chelated iron on the vegetative and flowering growth characteristics of (Gazania splendens L.). Iraqi Journal of Agricultural Sciences, 55(4), 1534-1543.

https://doi.org/10.36103/jcxd1e88

3. Ali, E. A., S. M. A., Sarrwy, and H. S. A. Hassan, 2010. Improving Canino apricot trees productivity by foliar spraying with polyamines. 1359-1365

http://www.insipub.com/jasr/2010/1359-1365.pdf

4. Al-Khafaji, A. M. H. H. and K. D. H. Al-jubouri. 2024. Developmental control of some physiological factors on reproductive biology and rudimentary embryos phenomenon in carrot seeds. Iraqi Journal of Agricultural Sciences,55(3):1038-1047. https://doi.org/10.36103/zvrre033

5. Barker, A. V., M. L. Stratton, 2015. Iron. Chapter 11. In: Handbook Nutrition. Second Edition (Eds. A.V.Barker, D.J. Pilbeam). – CRC Press Taylor and of Plant Francis Group. London. New York, pp. 399–426 https://doi.org/10.1201/b18458

6. Egea-Cortines, M., and Y. Mizrahi, 1991. Polyamines in cell division, fruit set and development, and seed germination. Biochemistry and physiology of polyamines in plants, 143-158.

7. Farahi, M. H., and M. Zadehbagheri, 2017. Effect of foliar application of polyamines on growth properties, vase life and endogenous plant growth regulators contents of cut rose flower (Rosa hybrida cv. Dolcvita). Iranian Journal of Horticultural Science, 47(4): 717-729.

https://journals.ut.ac.ir/article_61216_7d914742a232fa6333ad87b9f23837dc.pdf

8. Galston, A. W., and R. K. Sawhney, 1990. Polyamines in plant physiology. Plant physiology, 94(2):406-410.

https://doi.org/10.1104/pp.94.2.406

9. Guo, M., Ruan, W., Zhang, Y., Zhang, Y., Wang, X., Guo, Z., ... and K. Yi, 2022. A reciprocal inhibitory module for Pi and iron signalling. Molecular Plant, 15(1), 138-150.

https://doi.org/10.1016/j.molp.2021.09.011

10. Krishnaveni, S., B., Theymoli, and S. Sadasivam, 1984. Phenol Sulphuric acid method. Food chain., 15: 229

11. Nahed, G. A. E., and L. K. Balbaa, 2007. Influence of tyrosine and zinc on growth, flowering and chemical constituents of Salvia farinacea plants. J. of APP. Sci. Res, 3(11): 1479-1489.

12. Nandy, S., T., Das, C. K., Tudu, T., Mishra, M., Ghorai, V. S., Gadekar,... and A. Dey, 2022. Unravelling the multi-faceted regulatory role of polyamines in plant biotechnology, transgenics and secondary metabolomics. Applied Microbiology and Biotechnology, 106(3), 905-929.‏

https://doi.org/10.1007/s00253-021-11748-3

13. Saeed, A. K. J. M. 2023. Post-harvest treatments of cut flowers and ornamental plants, Dar al-Kutub and National Documents, Baghdad. College of Agriculture. Diyala University.

14. Saqallah, F.G., W.M. Hamed, and W.H. Talib. 2018. In vivo evaluation of Antirrhinum majus' wound-healing activity. Scientia Pharmaceutica. 86:45.

https://doi.org/10.3390/scipharm86040045

15. Sari, N. R., Indrawanis, E., and P. Heriansyah, 2023. Concentration Test for Ferrous Sulphate (FeSO4) and Thiamin in Murashige and Skoog Medium on The Orchid Sub-Culture Dendrobium SP By In-Vitro. J. Penelitian Pendidikan IPA, 9(3):1193-1201.‏

https://doi.org/10.29303/jppipa.v9i3.3088

16. Sas, S. A. S. 2004. STAT user’s guide for personal computers. Release7. 0. SAS Institute Inc., Cary, NC., USA.

17. Sato, S., and M. M. Peet, 2005. Effects of moderately elevated temperature stress on the timing of pollen release and its germination in tomato (Lycopersicon esculentum Mill.). The J.of Horticultural Science and Biotechnology, 80(1): 23-28.

https://doi.org/10.1080/14620316.2005.11511885

18. Seo, J., J. Lee, H.Y. Yang and J. Ju. 2020. Antirrhinum majus L. flower extract inhibits cell growth and metastatic properties in human colon and lung cancer cell lines. Food Science and Nutrition. 8:6259-6268.

https://doi.org/10.1002/fsn3.1924

19 Singh, S. and A.K. Saxena. 2019. Evaluation of inbreds and their f1s for flowering and post-harvest attributes in

snapdragon (Antirrhinum majus L.). International J.of Research and Review (6):441-447.

https://www.ijrrjournal.com/IJRR_Vol.6_Issue.7_July2019/IJRR0052.pdf

20. Smith, T. A., 1985. Polyamines. Annu. Rev. Plant Physiol., 36:117-143.

21. Soleimany-Fard H., K., and A. Khalighi, 2013. Improving the keeping quality and vase life of cut alstroemeria flowers by pre and post-harvest salicylic acid treatments. Notulae Scientia Biologicae, 5(3), 364-370.

https://doi.org/10.15835/nsb539095

22. Steeve, B., 2003. Modifying plant growth with growth regulators. Carolina Biological: Life science:1-3.

23. Van den Berg, A. K. and T. D., Perkins, 2004. Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. J. Forest Ecology and Management, 200(1-3) :113-117.

https://doi.org/10.1016/j.foreco.2004.06.005

24. Thkraa. S. A., and A. Y. Salih. 2023. Effect of foliar application of salicylic acid, magnesium, and iron on the seedligs of Citrus medica L . Iraqi Journal of Agricultural Sciences, 54(2), 388-398.

https://doi.org/10.36103/ijas.v54i2.1713

25. Zhang, Z., Chen, W., Tao, L., Wei, X., Gao, L., Gao, Y., ... and L. Song, 2023. Ethylene treatment promotes umami taste-active amino acids accumulation of Torreya grandis nuts post-harvest by comparative chemical and transcript analyses. Food Chemistry, 408, 135214.‏

http://dx.doi.org/10.1016/j.foodchem.2022.135214

26. Zuluaga, M. Y. A., M., Cardarelli, Y., Rouphael, S., Cesco, Y., Pii, and G. Colla, 2023. Iron nutrition in agriculture: From synthetic chelates to biochelates. Scientia Horticultural, 312, 111833.‏

http://dx.doi.org/10.1016/j.scienta.2023.111833

Downloads

Published

2025-01-30

How to Cite

M. N. Muslim, A. N. Badri, & H. A. Hadi. (2025). IMPACT OF FOLIAR APPLICATION OF POLYAMINE AND IRON SULPHAT ON GROWTH AND FLOWERING OF SNAPDRAGON (Antirrhinum majus L). IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 56(Special), 169-178. https://doi.org/10.36103/9y1m3e73

Similar Articles

1-10 of 776

You may also start an advanced similarity search for this article.