USING UAV’S IMAGERY VEGETATION INDICES COMBINATION IN DELINEATION OF SOIL MAP UNITS
DOI:
https://doi.org/10.36103/avh6v615Keywords:
UAV’s, Drones, vegetation indices, NGRDI, ExG, NExG, RGBVI, VARIAbstract
Alsweira research farm (44.823410 and 44.823040 N, 33.012701 and 33.012090 E) of an area of 5000 Da., was selected to conduct the UAV’s photogrammetry interpretation to delineate and separate soil units at the series level in collaboration with the measured RGB vegetation indices derived from their data. Visual interpretation of mosaic and the vegetation indices efficiently eased the delineation process of soil series map. RGB indices measured form UAV’s imagery were efficient in delineating soil units, and they showed significant relationships with above ground biomass where the later is representing the vegetation cover in the study area. NGRDI, ExG, NExG, and RGBVI showed high correlation with above ground biomass (g m-2) while VARI showed no relationship with it. Percentages of Indices participation in delineation and isolation of map units were as follow: NGRDI> RGBVI > NexG> ExG> VARI in 90%, 89%, 86%, 85%, and 52% respectively.
References
1. Abbass, J. A., and K. A. Wheib. 2007 Using Index of Compaction in interpreting the distribution and shapes of soil map units of Lower Diyala project. Journal of College of Education for Women 13, (2) :63-79. https://doi.org/10.5281/zenodo.11391234
2. Al-Jubouri A. M, S. M. Hishem, A. A. Suliman, S. A. El-Desouki, 2023. Survey and Classification of Soil Sheikh Saad sub-District in Wasit Governorate in Iraq using Aerial Photographs by (Drones). In IOP Conference Series: Earth and Environmental Science (Vol. 1252, No. 1, p. 012056). IOP Publishing. doi:10.1088/1755-1315/1252/1/012056
3. Al-Shubaily, I. I. and K. A. Wheib, 2022. Delineation of soil map units using remote sensing and green cover analysis. International Journal of Agricultural & Statistical Sciences, 18. DOI: https://connectjournals.com/ 03899.2022.18.1043
4. An, K., G. D. Xie, Y. F. Leng. and Y. Xiao, 2003. Design of farmland GIS for precision agriculture. Chinese geographical science, 13, 20-24.
https://doi.org/10.1007/s11769-003-0079-3
5. Ayamga, M., S. Akaba, and A. A. Nyaaba, 2021. Multifaceted applicability of drones: A review. Technological Forecasting and Social Change, 167, 1-5. https://doi.org/10.1016/j.techfore.2021.120677
6. Bendig, J., K. Yu, H. Aasen, A. Bolten, S. Bennertz, J. Broscheit, M.L. Gnyp, and G. Bareth, 2015. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39, 79-87. https://doi.org/10.1016/j.jag.2015.02.012
7. Bhaskar, B. P., 2018. Pedogeomorphic Analysis in Land Resource Inventory: A Case Study from Central India. Geospatial Technologies in Land Resources Mapping, Monitoring and Management, 273-296.
DOI: 10.1007/978-3-319-78711-4_14
8. Buol, S. W., R. J. Southard, R. C. Graham, and P. A. McDaniel, 2011. Soil genesis and classification. John Wiley & Sons. DOI:10.1002/9780470960622
9. Campbell, J. B., 1983. Mapping the Land: Aerial Imagery for Land Use Information. Resource Publications in Geography. Association of American Geographers, 1710 Sixteenth Street, NW, Washington, DC 20009. https://doi.org/10.1080/01431168508948455
10. Esri. 2020. ArcGIS Desktop: Release 10.8, volume 10 Posted: 2020.
DOI: dc4691a3990643ccbbfd41e99a9a76fe
11. Gitelson, A. A., Y. J. Kaufman, R. Stark, and D. Rundquist, 2002. Novel algorithms for remote estimation of vegetation fraction. Remote sensing of Environment, 80(1), 76-87. https://doi.org/10.1016/S0034-4257(01)00289-9
12. Hamad, W. J. and A. A. Suliman, 2021. Use of aerial images taken by drones for survey of soils of Akrkof area located North West of Baghdad in Iraq. Plant Archives 21 ((Suppliment-1)), 1388-1394. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.217
13. Janus, J. and E. Ertunç, 2022. Towards a full automation of land consolidation projects: Fast land partitioning algorithm using the land value map. Land Use Policy, 120, 106282-106288. https://doi.org/10.1016/j.landusepol.2022.106282
14. Jasim, A., A. Zaeen, L.K. Sharma, S.K. Bali, C. Wang, A .Buzza, and A. Alyokhin, 2020. Predicting phosphorus and potato yield using active and passive sensors. Agriculture, 10 (11), pp.564-588. https://doi.org/10.3390/agriculture10110564
15. Jones, C. B., 2014. Geographical information systems and computer cartography. Routledge. p.1-344. https://doi.org/10.4324/9781315846231
16. Lamichhane, S., L. Kumar, and K. Adhikari, 2021. Updating the national soil map of Nepal through digital soil mapping. Geoderma, 394, article.115041. https://doi.org/10.1016/j.geoderma.2021.115041
17.Liang, Y., W. Kou, H. Lai, J. Wang, Q. Wang, W. Xu, H. Wang, and N. Lu, 2022. Improved estimation of aboveground biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecological Indicators, 142, 1-13. Article 109286. https://doi.org/10.1016/j.ecolind.2022.109286
18. Lytos, A., T. Lagkas, P. Sarigiannidis, M. Zervakis, and G. Livanos, 2020. Towards smart farming: Systems, frameworks and exploitation of multiple sources. Computer Networks, 172, 1-14. Article 107147. https://doi.org/10.1016/j.comnet.2020.107147
19. Maddikunta, P.K.R., S. Hakak, M. Alazab, S. Bhattacharya, T.R. Gadekallu, W.Z Khan, and Q.V. Pham, 2021. Unmanned aerial vehicles in smart agriculture: Applications, requirements, and challenges. IEEE Sensors Journal, 21(16),17608-17619. https://doi.org/10.1109/JSEN.2021.3049471
20. Pomerening, J.A., 1969. Working as a Free Lance Soil Surveyor. Soil Survey Horizons, 10(1), 12-17. https://doi.org/10.2136/sh1969.1.0012
21. Prabhakara, K., W. D. Hively, and G. W. McCarty, 2015. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. International journal of applied earth observation and geoinformation, 39, 88-102. https://doi.org/10.1016/j.jag.2015.03.002
22. Reg, A., 2010. Unmanned aircraft systems: UAVS design, development and deployment. Austin Reg. John Wiley and Sons, Ltd. Publication,1-332.
23. Roth, L. and B. Streit, 2018. Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: an applied photogrammetric approach. Precision Agriculture, 19, 93-114. https://link.springer.com/article/10.1007/s11119-017-9501-1
24. Sheng, J., L. Ma, P.A. Jiang, B. Li, F. Huang, and H. Wu, 2010. Digital soil mapping to enable classification of the salt-affected soils in desert agro-ecological zones. Agricultural Water Management, 97(12), 1944-1951. http://dx.doi.org/10.1016/j.agwat.2009.04.011
25. Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
26. Wadod, M. M. and F. G. Mohammed, 2023, Review on Drone application methodologies in agriculture precision. In IOP Conference Series: Earth and Environmental Science (Vol. 1202, No. 1, 1202-1216 article. 012001). IOP Publishing. http://dx.doi.org/10.1088/1755-1315/1202/1/012001
27. Wheib, K. A., R. K. Abdullatiff, , and H. A Abdulrahman, 2019. Spatial distribution of some fertility elements in some northern Iraqi soils using geomatic techniques (remote sensing), Plant Archives, 2019, 19, 1295–1301. https://doi.org/10.5281/zenodo.11391729
28. Wheib, K. A., A. S. Ati, and S. A. ALjabar, 2024. Assessment of Unmanned Aerial Vehicle (UAV) Imagery in Monitoring Wheat Canopy Cover in Diwaniya Governorate/ Iraq. Iraqi Journal of Agricultural Sciences. Press print.
29. Wijayanto, A. K., A. Junaedi, A. A. Sujaswara, , M.B. Khamid, L.B. Prasetyo, C. Hongo, and H. Kuze. 2023. Machine Learning for Precise Rice Variety Classification in Tropical Environments Using UAV-Based Multispectral Sensing. AgriEngineering, 5(4), pp.2000-2019. http://dx.doi.org/10.3390/agriengineering5040123
30. Woebbecke, D.M., G.E. Meyer, K. Von Bargen, and D.A. Mortensen. 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, 38(1), 259-269. doi: 10.13031/2013.27838
31. Wuepper, D., P. Borrelli, and R. Finger. 2020. Countries and the global rate of soil erosion. Nature sustainability, 3(1), 51-55. https://doi.org/10.1038/s41893-019-0438-4
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.