THE EFFECT OF ENCAPSULATION ON SOME PROPERITES OF LACTOBACILLUS PLANTRAUM
DOI:
https://doi.org/10.36103/kem79w25Keywords:
pasteurization, olibanum gum, extrusion, stress tolerance, storage stability, food safetyAbstract
The objective of the study was to enhance the survivability of Lactobacillus plantarum (ATCC 29521) and investigate their resistance to some extreme conditions following its microencapsulation with alginate, chitosan, and olibanum gum. The study's findings showed that the use of olibanum gum in the first and second layers with alginate and chitosan protected the bacteria against various forms of pasteurization, as well as against extremely acidic conditions and high bile salt concentrations. After 28 days of storage at 4°C, the bacteria coated with the using of olibanum gum in the first and second layer demonstrated a great superiority in maintaining high numbers and better viability. The use of gum also contributed to increase the ability of the bacteria to withstand freezing storage at -18°C and re-thawing. The results also showed that olibanum gum was a superior cryoprotectant during freeze-drying process and storage for six months at 22 ℃. Also scanning electron microscope images showed that beads encapsulated with using of olibanum gum loaded a higher number of Lb. plantarum.
References
1.Al-Fahdawy W. F. J., and A.A. Alshaikh Daher. 2023.The effect of the synbiotic on reducing body weight, feed consumption, activity and health status of experimental animals. Iraqi Journal of Agricultural Sciences. 54 (1), 282-290. https://doi.org/10.36103/ijas.v54i1.1701
2.Ali A., M.T.M. Muhammad, K Sijam, and Y. Siddiqui. 2011. Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food Chem., 124, 620–626.https://doi.org/10.1016/j.foodchem.2010.06.085
3. Al-ghanimi, G. M. M., and A. M. Alrubeii. 2024. Effect of elastin hedrolyses on the chemical composition and some oxidation indicators in cold-stored ground beef. Iraqi Journal of Agricultural Sciences, 55(2):885-893. https://doi.org/10.36103/wfj0ra89
4. Alrubeii, A. M., and M. M, Alalaq. 2018. The bio-preservation of buffalo meat manufactured (pastrama) by using lactobacillus plantarum bacteria. Iraqi Journal of Agricultural Sciences, 49(1), 152-159. https://doi.org/10.36103/ijas.v49i1.219
5.Al-Younes, W. M., A. M. Abdelqader, M. K.H. Abuajamieh, and K. O. Nassar.2024. Efficacy of probiotics and essential oils as alternatives to antibiotic growth promoters in broiler chickens. Iraqi Journal of Agricultural Sciences .55(2): 633-643. https://doi.org/10.36103/8mfnd990
6.Bodzen, A., A. Jossier, S. Dupont, P. Y. Mousset, L. Beney S. Lafay, and P. Gervais. 2021. Design of a new lyoprotectant increasing freeze-dried Lactobacillus strain survival to long-term storage. BMC biotechnology, 21, 1-10. https://doi.org/10.1186/s12896-021-00726-2
7.Brinques, G. B., and M. A. Z. Ayub .2011. Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. Journal of Food Engineering, 103(2),123-128. https://doi.org/10.1016/j.jfoodeng.2010.10.006
8.Budianto E., E. Saepudin, and M. Nasir. 2020. The encapsulation of Lactobacillus casei probiotic bacteria based on sodium alginate and chitosan. IOP Conference Series: Earth and Environmental Science. Vol. 483. No. 1. Lyophilization of Pharmaceuticals. http://dx.doi.org/10.1088/17551315/483/1/012043
9.Bujna E., S. Weizhe , Q. D Nguyen, B.K., Süli, F. Alarawi, A. Szécsi , V. K Gupta, L. F., Friedrich and A. Gere. 2023. Microencapsulation and application of probiotic bacteria Lactiplantibacillus plantarum 299v strain. Microorganis-ms 11(4):947.https://doi.org/10.3390/microorganisms11040947
10.Chitprasert P., P. Sudsai, and A. Rodklongtan .2012. Aluminum carboxymethyl cellulose–rice bran microcapsules: enhancing survival of Lactobacillus reuteri KUB-AC5. Carbohydrate Polymers. 90(1), 78–86.https://doi.org/10.1016/j.carbpol.2012.04.065
11.Dobroslavić E., I. Elez Garofulić, Z. Zorić, S. Pedisić, M. Roje, and V. Dragović-Uzelac .2023. Physicochemical properties, antioxidant capacity, and bioavailability of Laurus nobilis L. leaf polyphenolic extracts microencapsu-lated by spray drying. Foods, 12(9), 1923. https://doi.org/10.3390/foods12091923
12.Domínguez Rubio A. P., C. L. D’Antoni, M. Piuri, and O. E. Pérez. 2022. Probiotics, their extracellular vesicles and infectious diseases. Frontiers. Microbiology, 13,864720.https://doi.org/10.3389/fmicb.2022.864720
13.Fareez I.M., M.S. Lim, K.R. Mishra, and K. Ramasamy. 2015.Chitosan coated alginate–xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules. V: 72, 1419-1428. https://doi.org/10.1016/j.ijbiomac.2014.10.054
14.Favaro-Trindade C.S., A.S. Shoji, A.C. Oliveirab, C.C. Balieiro, O. Freitas, M. Thomazini, R.J.B. Heinemanna, and P.K. Okuro. 2013. Viability of L. acidophilus microcapsules and their application to buffalo milk yoghurt. Food and Bioproducts Processing 91 :83–88. https://doi.org/10.1016/j.fbp.2012.08.009
15.Feucht A., and H. S. Kwak .2013. Microencapsulation of lactic acid bacteria (LAB). Korean Journal for Food Science of Animal Resources, 33(2), 229-238. https://doi.org/10.5851/KOSFA.2013.33.2.229
16.Frakolaki G., C. Tzia, V. Giannou, and E. Topakas. 2021. Effect of various encapsulating agents on the beads’ morphology and the viability of cells during BB-12 encapsulation through extrusion. Journal of Food Engineering, 294, 10423. https://doi.org/10.1016/j.jfoodeng.2020.110423
17.Gao J., X. Li, G. Zhang, F. A. Sadiq, J. Simal‐Gandara, J. Xiao, and Y. Sang .2021. Probiotics in the dairy industry-advances and opportunities. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3937-3982.https://doi.org/10.1111/1541-4337.12755
18.Huq T., A. Khan, R.A. Khan, B. Riedl, and A.M. Lacroix. 2013. Encapsulation of probiotic bacteria in biopolymeric system. Critical Reviews in Food Science and Nutrition, 53(9), 909–916. https://doi.org/10.1080/10408398.2011.573152
19.Hussein, N.A. and K.J. Luti. 2023. In vitro antimicrobial activity of lactobacillus parabuchneri nu14 as a probiotic. Iraqi Journal of Agricultural Sciences, 54(6),1647-1658.https://doi.org/10.36103/ijas.v54i6.1864
20.Hlha, E.C., T. da Silva, J.G. Lorenz, G.D. Rocha, and S. E. Anna. 2015. Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray drying with skim milk and cheese whey. Eur Food Res Technol. 240, 977–984. https://doi.org/10.1007/s00217-014-2402-x
21. Hadedee, L. T., M. A. Al Alalaq, and A.M.S. Alrubeii. 2023. Effect of iron oxide nanoparticles prepared by chemical method on the kidneys, liver and brain of male mice. IOP Conference Series: Earth and Environmental Science, 1252(1), 012132.
22.Kavitake D., S. Kandasamy, P.B. Devi and P.H. Shetty. 2018. Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods–A review. Food Bioscience, 21, 34-44. https://doi.org/10.1016/j.fbio.2017.11.003
23. Khaleel, M. M., and A. A. Thaer. 2017. Using probiotics and inulin to prolong fermented dairy products shelf life. Iraqi Journal of Agricultural Sciences. 48(2), 608-617. https://doi.org/10.36103/ijas.v48i2.428
24.Khoramnia, A., N. Abdullah, S.L. Liew, C.C. Sieo, K. Ramasamy, and Y.W. Ho. 2011. Enhancement of viability of a probiotic Lactobacillus strain for poultry during freeze‐drying and storage using the response surface methodology. Animal Science Journal, 82(1), 127-135. https://doi.org/10.1111/j.17400929.2010.00804.x
25.Kowalska, E. M. Ziarno, A. Ekielski, and T. Zelazi´nski .2022. Materials used for the microencapsulation of probiotic bacteria in the food industry. Molecules. 27,3321. https://doi.org/10.3390/molecules27103321
26.Lee J., Y. R. Ji, Y. Cho, and M. J. Choi. 2023. Effects of lyoprotectant and encapsulated Lactobacillus acidophilus KBL409 on freeze-drying and storage stability. Lwt, 182, 114846. https://doi.org/10.1016/j.lwt.2023.114846
27.Mahmoud, M., N. A. Abdallah, K. El-Shafei, N. F. Tawfik and H.S. El-Sayed. 2020. Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon, 6(3).https://doi.org/10.1016/j.heliyon.2020.e03541
28.Makinen K, B. Berger, R. Bel-Rhlid, and E. Ananta. 2012. Science and technology for the mastership of probiotic applications in food products. J Biotechnol.162(2),356–365. https://doi.org/10.1016/j.jbiotec.2012.07.006
29.Mirzaei H., H. Pourjafar, and A. Homayouni. 2012. Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chem. 132, 1966–1970. https://doi.org/10.1016/j.foodchem.2011.12.033
30.Mokarram R. R, S.A. Mortazavi, M.B.H. Najafi, and F. Shahidi.2009. The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Res. Int. 42:1040–1045. https://doi.org/10.1016/j.foodres.2009.04.023
31.Nag, A., K.S. Han, and H. Singh. 2011. Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. International Dairy Journal, 21(4), 247-253. https://doi.org/10.1016/j.idairyj.2010.11.002
32.Nori M.P., C.S. Favaro-Trindade, S.M. Alencar, M. Thomazini, J.C.C. Balieiro, and C.J.C. Castillo. 2011. Microencapsulation of propolis extract by complex coacervation. LWT – Food Sci. Technol. 44, 429–435. https://doi.org/10.1016/j.lwt.2010.09.010
33.Nunes, G.L., M.D. Araújo, A. Jos´e, L. Queiroz, E. Jacob, J. Smanioto, E. Marlon, D.M.´Flores, D. M., C.D. Bona, C. Ragagnin, and D. Menezes .2018. Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 89, 128–133. https://doi.org/10.1016/j.lwt. 2017.10.032
34.Praepanitchai O., A. Noomhorm, and A.K. Anal.2019. Survival and behavior of encapsulated probiotics (Lactobacillus plantarum) in calcium-alginate-soy protein isolate-based hydrogel beads in different processing conditions (pH and temperature) and in pasteurized mango juice. BioMed Research International Article .ID 9768152, 8 pages. https://doi.org/10.1155/2019/ 9768152
35.Rashidinejad A., A. Bahrami, A.R. Salara, A. Rezaei, and S. Mahdi.2020. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Critical Reviews in Food Science and Nutrition. 62(9), 2470-2494. https://doi.org/10.1080/10408398.2020.1854169
36.Rather, S. A., R. Akhter, F.A. Masoodi, A. Gani, and S.M. Wani .2017. Effect of double alginate microencapsulation on in vitro digestibility and thermal tolerance of Lactobacillus plantarum NCDC201 and L. casei NCDC297.LWT—Food Science and Technology,83,50–58. https://doi.org/10.1016/j.lwt. 2017.04.036
37.Rodrigues F.J., M.F. Cedran, J.L. Bicas, and H.H. Sato. 2020. Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications - A narrative review. Food Research International, 137,109682.https://doi.org/10.1016/j.foodres.2020.109682
38.Shi, L.E., Z.H. Li, D.T. Li, M. Xu, H.Y. Chen, and Z. L. Zhang. 2013. Encapsulation of probiotic Lactobacillus bulgaricus in alginate-milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng. 117(1),99-104. https://doi.org/10.1016/j.jfoodeng.2013.02.012
39.Siddiqui, M. Z. 2011. Boswellia serrata, a potential anti-inflammatory agent: an overview. Indian journal of pharmaceutical sciences. 73(3), 255. https://doi.org/10.4103%2F0250474X.93507
40.Silva, M.P., F.l. Tulini, E. Martins, M. Penning, C.S. Favaro-Trindade, and D. Poncelet. 2018. Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 89, 392–399. https://doi.org/10.1016/j.lwt.2017.11.008
41.Voo, W., P. Ravindra, B. Tey, and E. Chan. 2011. Comparison of alginate and pectin-based beads for production of poultry probiotic cells. Journal of Bioscience and Bioengineering. 111 (3), 294-299. https://doi.org/10.1016/j.jbiosc.2010.11.010
42.Wang R.M., N. Li, K. Zheng, and J. F. Hao. 2018. Enhancing acid tolerance of the probiotic bacterium Lactobacillus acidophilus NCFM with trehalose. FEMS Microbiol Lett 365(19), 217.https://doi.org/10.1093/femsle/fny217
43.Wang, J., D.R. Korber, N.H. Low and M.T. Nickerson.2014. Entrapment, survival and release of Bifidobacterium adolescentis within chickpea protein-based microcapsules. Food Res. Int. 55, 20–27. https://doi.org/10.1016/j.foodres.2013.09.018
44.Yao M. F., J. J Xie, H.J. Du, D. J. McClements, H. Xiao, and L.J. Li.2020. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf. 19 (2), 857–874. https://doi.org/10.1111/1541-4337.12532
45.Yeung, T. W., E.F. Üçok, K. A. Tiani, D. J. McClement and D.A. Sela.2016. Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Frontiers in Microbiology, 7, 494. https://doi.org/10.3389/fmicb.2016.00494
46. Zainy, Z. I., and A. M. S. Alrubeii, 2021. Determine the manufacturing characteristics of Iraqi pasterma. IOP Conference Series: Earth and Environmental Science, 910(1), 012056. DOI 10.1088/1755-1315/910/1/012056
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.