PHYTOCHEMICAL DIVERSITY AND NUTRITIONAL VALUE OF KENGER AT DIFFERENT LOCATIONS IN SULAIMANI REGION - IRAQ

Authors

  • Rozhgar. M. Ahmed

DOI:

https://doi.org/10.36103/t7rmmq75

Keywords:

Medicinal plants, Gundelia tournefortii L., Phytochemical, GC-MS, Macro and microelements, ICP-OES.

Abstract

Kenger (Gundelia tournefortii L.) plants were collected based on the availability of these plants in the local market to determine the nutrition value, some phytochemical content, and element content during March 2023 at the vegetative stage at thirteen different locations in the Sulaimani region. Some vegetative traits and chemical contents were studied. The results indicated that the highest content of carbohydrates was (12.670%) at Mawat, the protein was (32.703%) at Hazarmerd, and fiber was (35.620%) at Penjwen locations respectively. The analysis of Kenger edible parts (stem and leaves) through GC-MS revealed the presence of a complex mixture of compounds varying from 13 to 19 compounds among the locations. Compounds such as carboxylic acids ranged from 25.217% at Penjwen to 77.043% at Temar, terpenes ranged from 15.912% in Temar to 57.749% in Penjwen, and sterols ranged from 5.351% at Qara Dagh to 24.688% at Hazarmerd. In other locations, these compounds were detected in between those ranges, with differences in their concentrations. According to the results obtained from ICP-OES analysis, macro-elements (Ca, K, P, S, Mg, and Na) contents between the studied locations, the highest concentration of 3.127% occurred at Temar location, the lowest value was obtained at Gulp location with 2.468%, with an average of 2.811% for all locations.

References

Abu-Lafi, S., B. Rayan, S. Kadan, M. Abu-Lafi, and A. Rayan. 2019. Anticancer activity and phytochemical composition of wild Gundelia tournefortii. Oncology Letters. 17: 713–717. DOI: 10.3892/ol.2018.9602.

Aćimović, M., J. Stanković Jeremić, K. Simić, S. Ivanović, J. Ljujić, I. Čabarkapa, M. Radojčin, M. Todosijević, and M. Cvetković 2021. Essential oil quality of chamomile grown in Province of Vojvodina. Letop. naučnih Rad. Poljopr. Fak. Novi Sad 45(1): 1–8.

Akbar, M., U. Ali, T. Khalil, M. S. Iqbal, A. Amin, R. Naeem, A. Nazir, H. M. Waqas, Z. Aslam, and F. I. Jafri 2020. Cornus macrophylla, the antibacterial activity of organic leaf extracts and the characterization of the more lipophilic components by GC/MS. Molecules 25(10): 2395. https://doi.org/10.3390/molecules25102395.

Akaguck, N., I. Ozyigit, U. Yasar, Z. Leblebici, and C. Yarci 2010. Use of Pyracantha coccinea Roem. as a possible Rasagbiomonitor for the selected heavy metals. International Journal of Environmental Science & Technology. 7(3): 427–434.

Al-Saadi, S., K. Qader, and T. Hassan 2017. Variations in fatty acid methyl ester contents and composition in oil seeds Gundelia tournefortii L. Asteraceae 6(6): 188–192.

Ali-Shtayeh, M. S., R. M. Jamous, J. H. Al-Shafie’, W. A. Elgharabah, F. A. Kherfan, K. H. Qarariah, I. S. Khdair, I. M. Soos, A. A. Musleh, and B. A. Isa 2008. Traditional knowledge of wild edible plants used in Palestine (Northern West Bank): a comparative study. J. Ethnobiol. Ethnomed. 4: 1–13.

Ali, H., S. Dixit, D. Ali, S. M. Alqahtani, S. Alkahtani, and S. Alarifi. 2015 Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma. Drug Des. Devel. Ther.: 2793–2800..

Antal D. S 2005. Researchers regarding the content in mineral elements of the medicinal plants from the Aninei Mountains Doctoral Dessertation. Targu-Mures Univ. Med. Pharm.

Askari, S., A. Movahhedian Attar, A. Badiei, G. Naderi, F. Amini, and Z. Hamidzadeh 2008. In vivo study of Gundelia tournefortii L effect on biochemical parameters of Atherosclerosis. J. Med. plants 7(28): 112–119.

Association, B. M., and B. M. 1993. Association. Complementary medicine: new approaches to good practice. (No Title).

Bodnar, M., M. Szczyglowska, P. Konieczka, and J. Namiesnik 2016. Methods of selenium supplementation: bioavailability and determination of selenium compounds. Crit. Rev. Food Sci. Nutr. 56(1): 36–55.

Dalar, A., G. Zengin, M. Mukemre, A. S. Bengu, and S. İşler 2019. Gundelia rosea seed: Evaluation of biopharmaceutical potential and bioactive composition. South African J. Bot. 125: 505–510. https://doi.org/10.1016/j.sajb.2019.08.024

Donadio, J. L. S., M. M. Rogero, and T. P. Ong 2019. Selenium and Cancer Prevention. In: Nutrition and Cancer Prevention. The Royal Society of Chemistry. 50–75. 10.1002/14651858.CD005195.pub4

Ertas, A., M. Firat, I. Yener, M. Akdeniz, S. Yigitkan, D. Bakir, C. Cakir, M. Abdullah Yilmaz, M. Ozturk, and U. Kolak 2021. Phytochemical Fingerprints and Bioactivities of Ripe Disseminules (Fruit-Seeds) of Seventeen Gundelia (Kenger-Kereng Dikeni) Species from Anatolia with Chemometric Approach. Chem. Biodivers. 18(8). DOI: 10.1002/cbdv.202100207

Ertug F 2000. An ethnobotanical study in central anatoliaTurky. Econ. Bot. 54(2): 155–182.

Esbati, M., J. Farzadmehr, A. Foroughi, M. R. Rahdari, and J. Rodrigo-Comino. 2021. Assessment of the nutritional value of Gundelia tournefortii during its growth stages as a key element in the Senowbar rangeland ecosystem, Northeast of Iran. Int. J. Environ. Sci. Technol. 18(7): 1731–1738. https://doi.org/10.1007/s13762-020-02905-8

Di Fabio, G., V. Romanucci, A. De Marco, and A. Zarrelli 2014. Triterpenoids from Gymnema sylvestre and their pharmacological activities. Molecules 19(8): 10956–10981.

Fang, S., K. Gao, W. Hu, S. Wang, B. Chen, and Z. Zhou 2019. Foliar and seed application of plant growth regulators affects cotton yield by altering leaf physiology and floral bud carbohydrate accumulation. F. Crop. Res. 231: 105–114. https://doi.org/10.1016/j.fcr.2018.11.012

Farhang, H. R., M. R. Vahabi, and A. R. Allafchian 2016. Chemical compositions of the essential oil of Gundelia tournefortii L. (Asteraceae) from Central Zagros, Iran. J. Med. Herbs, 6(4): 227–233.

Fırat, M 2019. New status of Gundelia tournefortii L. var. armata Freyn & Sint. Asteraceae), a new Synon. its. OT Sist. Bot. Derg. 26(1): 17–32.

Goorani, S., M. K. Koohi, N. Seydi, A. Zangeneh, and M. Zangeneh 2018. Protection of alloxan monohydrateinduced testicular toxicity by Gundelia tournefortii aerial parts aqueous extract in male mice. Iran. J. Pharmacol. Ther. 16(1): 1–9.

Hosseini, S. S., F. Nadjafi, M. H. Asareh, and H. Rezadoost 2018. Morphological and yield related traits, essential oil and oil production of different landraces of black cumin (Nigella sativa) in Iran. Sci. Hortic. (Amsterdam). 233: 1–8.

Hoy, M. D., K. J. Moore, J. R. George, and E. C. Brummer 2002. Alfalfa yield and quality as influenced by establishment method. Agron. J. 94(1): 65–71.

Jeambey, Z., T. Johns, S. Talhouk, and M. Batal 2009. Perceived health and medicinal properties of six species of wild edible plants in north-east Lebanon. Public Health Nutr. 12(10): 1902–1911.

Kabata-Pendias, A., and A. B. Mukherjee 2007. Trace elements from soil to human. Springer Science & Business Media.

Kadan, S., Y. Sasson, B. Saad, and H. Zaid 2018. Gundelia tournefortii Antidiabetic Efficacy: Chemical Composition and GLUT4 Translocation. Evidence-based Complement. Altern. Med. 2018.

Khalil, N., L. El-Jalel, M. Yousif, and M. Gonaid 2020. Altitude impact on the chemical profile and biological activities of Satureja thymbra L. essential oil. BMC Complement. Med. Ther. 20(1): 1–11. https://doi.org/10.1186/s12906-020-02982-9

Kiruthiga, B., and P. S. Kumar 2019. Potential impacts of various coastal locales on the phytochemical landscape in sand dune flora calotropis gigantea white across the coleroon VALLEY. Plant Arch. 19(2).

Körner, C., M. Neumayer, S. P. Menendez-Riedl, and A. Smeets-Scheel 1989. Functional morphology of mountain plants. Flora 182(5): 353–383.

Kumar Singh, N., and V. Pratap Singh 2014. Anticancer activity of the roots of Ichnocarpus frutescens R. Br. and isolated triterpenes. Pak. J. Pharm. Sci. 27(1).

Leroux, O 2012. Collenchyma: a versatile mechanical tissue with dynamic cell walls. Ann. Bot. 110(6): 1083–1098.

López-Huerta, F. A., A. Nieto-Camacho, F. Morales-Flores, S. Hernández-Ortega, M. I. Chávez, C. A. M. Cuesta, I. Martínez, B. Espinoza, F. J. Espinosa-García, and G. Delgado 2020. Hopane-type triterpenes from Cnidoscolus spinosus and their bioactivities. Bioorg. Chem. 100: 103919. doi: 10.1016/j.bioorg.2020.103919.

López-Lázaro, M., N. P. De La Peña, N. Pastor, C. Martín-Cordero, E. Navarro, F. Cortés, M. J. Ayuso, and M. V. Toro 2000. Anti-tumour activity of Digitalis purpurea L. subsp. heywoodii. Planta Med. 69(8): 701–704.

Mahmoud, A.-R. K., and A. A. M. K. Allah 2000. Design and Analysis of Agricultural Experiments. Univ. Mosul-Ministry High. Educ. Sci. Res. Dar Al Kutub Print. Publ. pp:485.

Matthäus, B., and M. M. Özcan 2011. Chemical evaluation of flower bud and oils of tumbleweed (Gundelia tourneforti L.) as a new potential nutrition sources. J. Food Biochem. 35(4): 1257–1266.

Moore, B. D., R. L. Andrew, C. Külheim, and W. J. Foley 2014. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol. 201(3): 733–750. 2014.

Nieder, R., D. K. Benbi, F. X. Reichl, R. Nieder, D. K. Benbi, and F. X. Reichl 2018. Macro-and secondary elements and their role in human health. Soil components Hum. Heal.: 257–315.

Panda, S., M. Jafri, A. Kar, and B. K. Meheta. Thyroid inhibitory, antiperoxidative and hypoglycemic effects of stigmasterol isolated from Butea monosperma. Fitoterapia 80: 123–126. 2009.

Pant, P., S. Pandey, and S. Dall’Acqua 2021. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature Review. Chem. Biodivers. 18(11): e2100345. DOI: 10.1002/cbdv.202100345

Park, H.-M., J. Heo, and Y. Park 2011. Calcium from plant sources is beneficial to lowering the risk of osteoporosis in postmenopausal Korean Women. Nutr. Res. 31(1): 27–32.

Pohl, H. R., J. S. Wheeler, and H. E. Murray 2013. Sodium and potassium in health and disease. Interrelat. between Essent. Met. ions Hum. Dis.: 29-47.

Qaderi, M. M., A. B. Martel, and C. A. Strugnell 2023. Environmental Factors Regulate Plant Secondary Metabolites. Plants 12(3): 447.

Qin, J. F 2011. The research of trace elements of Chinese medicine in China III. Trace Elem. Mater. basis quantifying Prop. Effic. Chinese Med. Guangdong Trace Elem. Sci 18(1): 1–10.

Qnais, E., Y. Bseiso, M. Wedyan, M. Al-Omari, and H. Alkhateeb 2016. Chemical composition and antinociceptive effects of essential oil from aerial parts of Gundelia tournefortii L Asteraceae (Compositae) in rats. Trop. J. Pharm. Res. 15(10): 2183–2190.

Ragasa, C. Y., J. M. A. Reyes, M. C. S. Tan, G. G. Oyong, R. Brkljaca, and S. Urban 2016. Sterols and triterpenes from Gundelia tournefortii L. var Armata. Der Pharma Chem. 8(20): 240.

Saleem, M., I. Murtaza, R. S. Tarapore, Y. Suh, V. M. Adhami, J. J. Johnson, I. A. Siddiqui, N. Khan, M. Asim, and B. Bin Hafeez 2009. Lupeol inhibits proliferation of human prostate cancer cells by targeting β-catenin signaling. Carcinogenesis 30(5): 808–817.

Sekeroglu, N., S. A. Meraler, F. Özkutlu, and M. Kulak 2012. Variation of Mineral Composition in Different Parts of Mahaleb. Asian J. Chem. 24(12):1-6.

Serfor-Armah, Y., B. J. B. Nyarko, E. H. K. Akaho, A. W. K. Kyere, S. Osae, and K 2002. Oppong-Boachie. Multielemental analysis of some traditional plant medicines used in Ghana. J. Trace Microprobe Tech. 20(3): 419–427.

Tahvilian, R., R. Moradi, H. Zhaleh, M. Zangeneh, A. Zangeneh, H. Yazdani, and M. Hajialiani 2017. Chemical composition and screening of antibacterial activity of essential oil of Pistacia khinjuk against two selected pathogenic bacteria. Ann. Trop. Med. Public Heal. 10(5).

Tarley, C. R. T., W. K. T. Coltro, M. Matsushita, and N. E. de Souza 2001. Characteristic levels of some heavy metals from Brazilian canned sardines (Sardinella brasiliensis). J. food Compos. Anal. 14(6): 611–617.

Tawfiq, S. E., and S. Muhammed 2015. Effect of different clipping times on forage quality of three cereal crops at two locations of Sulaimani region. J. Zankoi Sulaimani, Part–A-(Pure Appl. Sci. JZS 17(3): 245–254.

Thomas, D. W., and E. Merian 1991. Metals and their compounds in the environment. VCH–Wienheim, E. Merian ed: 789–801.

Tilaoui, M., H. A. Mouse, A. Jaafari, and A. Zyad 2014. Differential effect of artemisinin against cancer cell lines. Nat. Products Bioprospect. 4(3): 189–196.

Tuncturk, M., T. Eryigit, N. Sekeroglu, and F. Ozgokce 1993. Chemical composition of some edible wild plants grown in Eastern Anatolia. Am. J. Essent. Oils Nat. Prod. 2: 31–34.

Turnlund, J. R., W. R. Keyes, and G. L. Peiffer 1993. A stable isotope study of the dietary molybdenum requirement of young men. Trace Elem. man Anim. 8: 189–192. 1993.

Yasukawa, K., M. Takido, T. Matsumoto, M. Takeuchi, and S. Nakagawa 1991. Sterol and triterpene derivatives from plants inhibit

the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two-stage carcinogenesis. Oncology 48(1): 72–76.

Yener, İ 2019. Trace element analysis in some plants species by inductively coupled plasma optical emission spectrometry (ICP-OES). J. Inst. Sci. Technol. 9(3): 1492–1502.

Zangeneh, M. M., N. Goodarzi, A. Zangeneh, R. Tahvilian, and F. Najafi. 2018. Amelioration of renal structural changes in STZ-induced diabetic mice with ethanolic extract of Allium saralicum RM Fritsch. Comp. Clin. Path. 27: 861–867.

Downloads

Published

2024-02-25

Issue

Section

Articles

How to Cite

Rozhgar. M. Ahmed. (2024). PHYTOCHEMICAL DIVERSITY AND NUTRITIONAL VALUE OF KENGER AT DIFFERENT LOCATIONS IN SULAIMANI REGION - IRAQ. IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 55(1), 479-493. https://doi.org/10.36103/t7rmmq75

Similar Articles

1-10 of 290

You may also start an advanced similarity search for this article.