• Rand M. A.



antimicrobial activity; bacterial growth; cuo nanoparticles; antibiotic resistance.


This study was aimed to assess the antimicrobial  activity of  copper oxide nanoparticles (CuO NPs) created by  method of thermal green way using basically a maize starch. Mucoid were appeared of Klebsiella pneumoniae bacterial colonies and the positive results with some biochemical tests. On the other hand, Staphylococcus aureus  appeared pigmented colonies surrounded by a yellow halo because of mannitol fermentation.  According to the 24 time incubation period, the CuO NPs antimicrobial activity showed of bacterial growth pathogenic K. pneumonia was 0.52 ± 0.04 cell/ml than control 1.60 ± 0.01 cell/ml .Aven as S. aureus appeared the number of bacterial growth as follow 0.79 ± 0.07 cell/ml compared with control 1.90 ± 0.01 cell/ml. The biologically effect for enhancing antimicrobial activity the percentage of resistant was decreasing from 66.6% to 22.2% when used copper oxide nanoparticles. Also, S. aureus sensitivity test showed resistant percentage was decreased from 55.5% to 33.3% at 24 hours.


- Abd Al-Rhman R.M. and M. A. Al-Aubydi, 2018.biosynthesis of copper oxide nanoparticales using starch of maize and its antimicrobial activity against apportunstic pathogen. Journal of Global Pharma Technology.10, Issue 11 (Suppl.):790-800.

-Ahamed, M., H.A. Alhadlaq, M. Khan, P. Karuppiah, and N.A. Al-Dhabi, 2014.Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. Journal of Nanomaterials. 2014: 4 pages

-Alaa Alden, M. A. and L. A. Yaaqoob, 2022. Evaluation of the biological effect synthesis zinc oxide nanoparticles on Pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences,53(1):27-37.

-Al- Masari, A.I. and H.Q. Al-Himdany, 2022. Effect of adding of Artichoke leaves of extract powder (CYnarascolymus L.) to the diet on the productive Per formance of broilers. Iraqi Journal of Agricultural Sciences:53(1):9-15.

-Atlas, R. M., Parks and A. Brown, 1995.Laboratory Manual of Experimental Microbiology. United States of America

- Azam A., A.S. Ahmed, M. Oves, and M.S. Khan, 2012. Memic A. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and - negative bacterial strains. Int. J. Nanomedicine,7(9): 3527-3535

- Bauer, A.W., W.M.M. Kirby, J.C. Sherris, and M. Truck, 1966. Antibiotic susceptibility testing by astandardized single disk method. Am. J. of Clin. Pathol., 45:493-496

- Bermudes H, F. Jude, E.A. Chaibl, C. Rpin, R. Labia, and C. Quantum, 1999. Molecular characterization of TEM-59(IRT-17) anoval inhibitor-resistant TEM Derived β-lactamases in clinical isolates of Klebsiella oxytoca. Antimicrob. Agent chemother, 43(7):1667-1681

-Bondarenko, O., K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, and A. Kahru, 2013. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol., 87, 1181–1200

- Borkow, G.and J. Gabbay, 2009. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol., 3, 272–278.

-Chatterjee, A.K., R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, and T. Basu, 2012. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology, 23, 085103.

-da Silva KE, W.G Maciel, F.P.C. Sacchi, C.G. Carvalhaes, F. Rodrigues-Costa, A.C.R. da Silva, M.G. Croda, F.J. Negrão, J. Croda, A.C. Gales, and S. Simionatto, 2016. Risk factors for KPC-producing Klebsiella penumoniae wacth out for surgery. J Medical Microbiol.; 65:547-53

--Hamid O. S., and S. S. Mahmood, 2021. The synergistic effect of gold nanoparticle loaded with ceftazidium antibiotic against multidrug resistance Pseudomonas aeruginosa Iraqi Journal of Agricultural Sciences :52(4):828-835.

--Hassan A Hemeg , 2017. Nanomaterials for alternative antibacterial therapyInternational Journal of Nanomedicine International Journal of Nanomedicine:12 8211–8225

- Heinlaan M, A. Ivask, I. Blinova, H.C. Dubourguier, and A. Kakru, 2008. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalusplatyurus. Chemosphere, 71(7):1308-1316

- Holden, M.T., L.Y. Hsu, K. Kurt, L.A. Weinert, A.E. Mather, S.R. Harris, B. Strommenger, F. Layer, W. Witte, and H. A. de Lencastre, 2013. Genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res., 23, 653–664.

- Holt , J.J., N.R. Krieg , B.H.A. Sneath, J.T. Staley, and S.T. Williams, 1994. Bergey’s manual determinative bacteriology. Nineth Edition. Williams and Wilken , Baltimore ,pp.175-248

-Hossein A, P.S. Shahram, E. Yousef, E.M. Saeed, and R. Nahid, 2016. Green synthesis of starch-mediated CuO nanoparticles: preparation, characterization, antimicrobial activities and in vitro MTT Assay Against MCF-7 Cell line

- Le Cerf, D., F. Irinei, and G. Muller, 1990. Solution properties of gum exudates from Sterculia urens (karaya gum). Carbohydr Polym. 13(4): 375-386

-Liang X, M. Sun, L. Li, R. Qiao, K. Chen, Q. Xiao, and F. Xu, 2012. Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites, Dalton Trans., 41(9):2804-2811

-MacFaddin, J.F., 2000. Biochemical Test for Identification of Medical Bacteria. Thirdth Edition. The Willims and Wilkinson Baltimor. United States of America,pp:689-691

-Martin R.M., and M.A. Bachman, 2018. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol.; 8(4).

-Otto, M., 2006. Bacterial evasion of antimicrobial peptides by biofilm formation. Curr. Top. Microbiol. Immunol., 306:251-258

-Paczosa M.K., J. Mecsas, 2016. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev.; 80(3):629-61

- Patel S.S., H.C. Chauhan, A.C. Patel, M.D. Shrimali, K.B. Patel, B.I. Prajapati, and et al., 2017.Isolation and identification of Klebsiella pneumoniae from sheep-case report. Int J Curr Microbiol App Sci. 2017; 6(5):331-4.

-Podschun R, and U. Ullmann, 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev.; 11(4):589-603.

-Raygada J., and D. Levine, 2009. Methicillin resistant Staphylococcus aureus: a growing risk in the hospitals and in the community. Am Health Drug Benefits, 2(2): 86-95

-Russo, A., E.Concia, F.Cristini, F.G. de Rosa, S.Esposito, F.Menichetti, N. Petrosillo, M. Tumbarello, M.Venditti, P.Viale, and et al., 2016.Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections. Clin. Microbiol. Infect., 22, 27–36

-Schlievert, P.M., K.N. Shands, B.B. Dan, G.P.Schmid, and R.D.Nishimura, 1981. Identification and characterization of an exotoxin from Staphylococcus aureus associated with toxic-shock syndrome. J. Infect. Dis., 143, 509–516.

- Stock, I., and B. Wiedemann, 2001. Natural antibiotic susceptibility of Klebsiella pneumoniae, K. oxytoca, K. planticola, K. ornithinolytica and K.terrigenastrains .J. Med. Microbiol., 50: 396-406

-Tacconelli, E. and F. Foschi, 2017.Does gender affect the outcome of community-acquired Staphylococcus aureus bacteraemia? Clin. Microbiol. Infect., 23, 23–25.

-Tawale, J.S., K.Dey, R. Pasricha, K.N. Sood, and A.K. Srivastava, 2010. Synthesis and characterization of ZnOtetrapods for optical and antibacterial applications. Thin. Solid. Films, 519(3):1244-1247

-Usman,M. 2013. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed., 8, 4467–4479

-Wertheim, H.F. D.C.Melles, M.C. Vos, W. van Leeuwen, A.van Belkum, H.A. Verbrugh, and J.L. Nouwen, 2005. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis., 5, 751–762.

- WHO., 2014. Antimicrobial Resistance Global Report on Surveillance: Summary; World Health Organization: Geneva, Switzerland

-World Health Organization, 2014. Antimicrobal Resistance Global report on surveillance. Geneva: Switzerland: WHO Press

Zhang, Y., L. Wang, X. Xu, F. Li, and Q. Wu, 2018. Combined systems of different antibiotics with nano-CuO against Escherichia coli and the mechanisms involved. Nanomedicine (Lond).;13(3):339-351.







How to Cite


Similar Articles

1-10 of 546

You may also start an advanced similarity search for this article.