CYTOTOXIC EFFECT OF ASPARAGINASE PRODUCE FROM E.COLI AND CONJUGATED WITH ZNO NANOPARTICLES ON CANCER CELL LINES
DOI:
https://doi.org/10.36103/ijas.v54i6.1866Keywords:
purification, the ZnONPs-L-ASNase conjugate, anticancer activityAbstract
This study was aimed to examine the anticancer activity of fabricated ZnONPs- L-ASNase conjugate against cancer and normal cell lines. Total of 127 bacterial isolates were taken from clinicalandenvironmentalsamples then identified as E.coli.In this work, 88 isolates were identified as E.coli.L-asparaginase produced from E.coli were screened¸clinical Isolates of E.coli from urine sample have the potential to produce asparaginase that is responsible for cytotoxicity¸the optimal culture conditions for the development of the enzyme L-asparaginase were determined to be 37ºC and pH8. Nitrogen sourceconcentrations at 0.9gm/ml were discovered to maximize enzyme production. L-asparaginase then purified by two steps that includeion exchange column and gel filtration. Purification and recovery percentage for L-ASNase was 6.21%, 10.34% respectively. Effective conjugation was approved by UV-visible spectroscopy. ZnO nanoparticles exhibit absorbance peaks approximately 200-300 nm. XRD analysis confirmed the crystallite size of the ZnO nanoparticles was observed to be 18.4 nm. The activity of L-ASNase in the ZnONPs-L-ASNasewas detected by a direct nesslerization method and the findings showed a substantial increase L-ASNase specific activity within the conjugate of ZnONPs-L-ASNase in comparison to its free state. The ZnONPs-L-ASNase conjugate showed the greatest and most substantial cytotoxic action against A375 with survival rate at 400 µg /mL about 45.8± 2.3. The IC50 value of 44.69 µg/ mL of ZnONPs- L-ASNase was calculated for A375 cells. In comparison, all substances exhibited weak to moderate cytotoxicity when tested against the normal cell line WRL-68. The ZnONPs-L-ASNase combination therapy resulted in a higher cytotoxic effect. This action could be attributed to the synergetic effects of both L-ASNase and the conjugated molecules ZnONPs.
References
Abbas, A. M., S. A., Hammad, H., Sallam, L., MahfouzA, M. K., Ahmed, S. M., Abboudy, A. E., Ahmed, S. K., Alhag, M. A. Taher, and S. A. AlrummanL, 2021. Biosynthesis of zinc oxide nanoparticles using leaf extract of prosopis juliflora as potential photocatalyst for the treatment of paper mill effluent. Applied Sciences, 11, 11394. https://doi.org/10.3390/app112311394
Abdel Hameed, A. 2005. Production and Characterization of L-Asparaginase from local isolate of Serratia marcescens bacteria'. M. Sc. Thesis, Collage of Science, Baghdad University. Iraq. https://doi.org/10.36103/ijas.v53i6.1668
Ahmed, N., S. S. Mahmood, and A. H. Abbas. 2019. A comparative study of some virulence factors and phylogenetic characterization of Escherichia.coli isolates causing urinary tract infection and the commensal gut. Iraqi Journal of Agricultural Sciences, 50(4):1193-1198. https://doi.org/10.36103/ijas.v50i4.763
AL-Ariki, S., N. A., Yahya, S. A. A., AL-A’nsi, M. H., Jumali, A. Jannah, and R. Abd-Shukor, 2021. Synthesis and comparative study on the structural and optical properties of ZnO doped with Ni and Ag nano powders fabricated by sol gel technique. Scientific Reports, 11, 11948. DOI: 10.1038/s41598-021-91439-1
- Alaa Alden, M. A. and L. A.Yaaqoob. 2022. Evaluation of the biological effect synthesized zinc oxide nanoparticles on Pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences, 53(1):.27-37. https://doi.org/10.36103/ijas.v53i1.1502
Auda. J. M and M. I. Khalifa. 2019. Cloning and expression of a lipase gene from Pseudomonas aeruginosa into E.coli. Iraqi Journal of Agricultural Sciences, 50(3):768-775. https://doi.org/10.36103/ijas.v50i3.693
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72, 248-254. DOI: 10.1006/abio.1976.9999
- Chagas, E. P. and L. Sodek, 2001. Purification and properties of asparaginase from the testa of immature seeds of pea (Pisum sativum L.). Brazilian Archives of Biology and Technology, 44, 239-245. DOI: 10.1590/S1516-89132001000300004
- DIVYA, M., B., Vaseearan, M., Abinaya, S., Vijayakumar, M., Govindarajan, N. S., Alharbi, S., Kadaikunnan, J. M. Khaled, and G. Benelli, 2018b. Biopolymer gelatin-coated zinc oxide nanoparticles showed high antibacterial, antibiofilm and anti-angiogenic activity. Journal of Photochemistry and Photobiology B: Biology, 178, 211-218. https://doi.org/10.1016/j.jphotobiol.2017.11.008
- EL-Naggar, N. E.-A. and N. M. El-shweihy, 2020. Bioprocess development for L-asparaginase production by Streptomyces rochei, purification and in-vitro efficacy against various human carcinoma cell lines. Scientific reports, 10, 7942. DOI: 10.1038/s41598-020-64052-x
Elumalai. K, and S. Velmurugan 2015. Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Applied Surface Science, 345, 329-336. https://doi.org/10.1016/j.apsusc.2015.03.176
.Hassan, T. J. and S.I. Hussein. 2022. Development of bioprocess for production and purification L-Asparaginase from Staphyllococcus aureus, and In vitro efficacy against human breast cancer cell line. Iraqi Journal of Agricultural Sciences, 53(6):1525-1538. https://doi.org/10.36103/ijas.v53i6.1668
Hatamzadeh.S,K.Rahnama,S.Nasrollahnejad, K. B. Fotouhifar, K. Hemmati, J. F. White, and F. Taliei. 2020. Isolation and identification of L-asparaginase producing endophytic fungi from the Asteraceae family plant species of Iran. Peer J8 e8309 DOI: 10.7717/peerj.8309
- Imada, A., S., Igarasi, K. Nakahama, and M. Isono, 1973. Asparaginase and glutaminase activities of micro-organisms. J Gen Microbiol, 76, 85-99. DOI: 10.1099/00221287-76-1-85
Jawad, L.Q. and H.A.R.R., Rasheed. 2022. Isolation and Purification of anticancer protein Exotxin A from Pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences, 53(1):48-56. https://doi.org/10.36103/ijas.v53i1.1507
Jha S. K, D. Pasrija, R. K. Sinha and H. R. Singh 2012. Microbial L-asparaginase: A review on current scenario and future prospects. Int J Pharm Sci Res ;3:3076-90. DOI: http://dx.doi.org/10.13040/IJPSR.0975-8232.3(9).3076-90
Krishnapura, P.R., P.D. Belur, and S., Subramanya, 2016. A critical review on properties and applications of microbial l-asparaginases. Critical reviews in microbiology, 42(5), pp.720-737. DOI: 10.3109/1040841X.2015.1022505
Mohammed, Y. J., J. Y. Mustafa and A. R. Abdullah. 2020. Isolation and molecular study of some bacterial urinary tract infections of sheep in basrah proving. Iraqi Journal of Agricultural Sciences, 51)3):885-893. https://doi.org/10.36103/ijas.v51i3.1043
Mohideen. A. K. S. 2020. Molecular docking study of L-asparaginase from Vibrio campbellii in the treatment of acute lymphoblastic leukemia (ALL). The EuroBiotech Journal 4 (1): 8-16
DOI: 10.2478/ebtj-2020-0002
Mukherjee, J., S. Majumar, and T. Scheper, 2000. Studies on nutritional and oxygen requirements for production of L-asparaginase by Enterobacter aerogenes. Applied Microbiology and Biotechnology, 53, 180-184. DOI: 10.1007/s002530050006
Mulvey. M. A. 2002. Adhesion and entry of uropathogenic Escherichia coli. Cellular microbiology,4: 257-271 https://doi.org/10.1046/j.14625822.2002.00193.x
Radadiya, A., W., Zhu, A., Coricello, S. Alcaro, and N. G. J. Richards, 2020. Improving the Treatment of Acute Lymphoblastic Leukemia. Biochemistry, 59, 3193-3200. doi: 10.1021/acs.biochem.0c00354
Rakh, R., S., Dalvi, B. Musle, and L. Raut, 2017. Production, extraction and characterization of red pigment produced by Serratia rubidaea JCM 1240T isolated from soil. International Journal of Current Microbiology and Applied Sciences, 6, 143-154. http://dx.doi.org/10.20546/ijcmas.2017.601.018
Rasheed, H. A., R. Alsanee, and H. M. Khalfa, 2022. Anticancer Mechanisms of Zoledronic Acid-Based Graphene Oxide Nanoparticles for Prostate Cancer Bone Metastases Treatment. Iraqi Journal of Science, 4241-4253. https://doi.org/10.24996/ijs.2022.63.10.11
Ren. J, F. He and L. Zhang. 2010. The construction and application of a new PPY-MSPQC for L-asparaginase activity assay. Sensors and Actuators. J., 145: 272-277. DOI:10.1016/j.snb.2009.12.006
Salih. E. Y, M. F. M M Z. Sabri, K. Hussein, Sulaiman, S. M. Said, B. Saifullah, and M. B. A. Bashir 2018. Structural, optical and electrical properties of ZnO/ZnAl 2 O 4 nanocomposites prepared via thermal reduction approach. Journal of Materials Science, 53, 581-590 DOI:10.1007/s10853-017-1504-9
Schmidt H and M. Hensel 2004. Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17: 14-56 DOI: 10.1128/CMR.17.1.14-56.2004
Shodiyeva, D., M., Bobakandova, M. Annaev, and Tokhirova, J., 2023. Identification and isolation of endophytic fungi producing l-asparaginase in representatives of the asteratcea family. Science and innovation, 2(D2), pp.107-112. https://doi.org/10.5281/zenodo.7643932
Strnadová, M., M., Hecker, L., Wölfel, H. Mach, and J. Chaloupka, 1991. Temperature shifts and sporulation of Bacillus megaterium. Microbiology, 137, 787-795
https://doi.org/10.1099/00221287-137-4-787
Verma. N, K. Kumar, G. Kaur and S. Anand 2007. L-asparaginase: A promising chemotherapeutic agent. Crit Rev Biotechnol;27:45-62. DOI: 10.1080/07388550601173926
Warangkar. S. C and C. N. Khobragade 2010. Purification, characterization, and effect of thiol compounds on activity of the Erwinia carotovora L-asparaginase. Enzyme Res;1:1-10. doi: 10.4061/2010/165878
Whitaker, J.R. 1994. Principles of Enzymology for the Food Sciences (2nd ed.). Routledge. https://doi.org/10.1201/9780203742136
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.