EFFECT OF SHORT STARVATION AND REFEEDING ON GROWTH, BODY COMPOSITION, AND DIGESTIVE ENZYMES ACTIVITIES IN YELLOW RASBORA (Rasbora lateristriata Blkr.)
DOI:
https://doi.org/10.36103/ijas.v54i4.1781Keywords:
fasting, compensatory, proximate, protease.Abstract
Digestive enzyme activities of Yellow Rasbora (Rasbora lateristriata) had been reported, but only focused on a daily feeding strategy. The effect of starvation and refeeding on the growth, body composition, and digestive enzyme activities in Yellow Rasbora has never been reported. This study aimed to know the most efficient feeding strategy for growth, body composition, and digestive enzyme activities of Yellow Rasbora. The experiment was conducted in 20 aquariums using two months old fingerling. Four different feeding strategies were tested; twice feeding a day, one-day starvation and six days refeeding, two days starvation and five days refeeding, and four days starvation and ten days refeeding. The result showed that different feeding strategies had no significant effect on all growth parameters. The result proved that Yellow Rasbora could compensate for starvation through absolute growth, with the highest value achieved in two days of starvation and five refeeding. No significant value was also observed on crude protein, and lipid contents indicate that starvation does not affect the utilization of protein and lipid reserves. This result was consistent with fish condition factors which did not differ among treatments. The feeding strategy did not significantly affect total protease, trypsin, and amylase activities, but significantly affected chymotrypsin, lipase, and alkaline phosphatase activities. All parameter indicated that two days starvation and five days refed duration showed similar values to daily feeding. Therefore, it is concluded that two days starvation and five days refeeding method is the most efficient feeding strategy for Yellow Rasbora cultivation.
References
Abolfathi, M., A. Hajimoradloo, R. Ghorbani, and A. Zamani, .2012. Comparative Biochemistry and Physiology, Part A Effect of starvation and refeeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comparative Biochemistry and Physiology, Part A, 161(2), 166–173.
https://www.sciencedirect.com/science/article/pii/S1095643311002959
Al-Hassani, S. T. and S. A.Mustafa. 2022. Efficiency of synbiotic as feed additives on growth performance, survival rate and health status in common carp challenged with saprolegnia spp. Iraqi Journal of Agricultural Sciences, 53(2):397-405.
https://doi.org/10.36103/ijas.v53i2.1548
zodi, M., E. Ebrahimi, O. Farhadian, N. Mahboobi-Soofiani and V. Morshedi. 2015. Compensatory growth response of rainbow trout Oncorhynchus mykiss Walbaum following short starvation periods. Chinese Journal of Oceanology and Limnology, 33(4), 928–933.
https://link.springer.com/article/10.1007/s00343-015-4228-1
Babaei, S., A. Abedian-Kenari, , M. Naseri, , M. A.Yazdani-Sadati, and I. Metón. 2020. Impact of starvation on digestive enzymes activities and plasma metabolites in Siberian sturgeon (Acipenser baerii, Brandt, 1869). Aquaculture Research, 51(4), 1689-1699. https://onlinelibrary.wiley.com/doi/abs/10.1111/are.14515
Bermejo-Poza, R., M. Fernández-Muela, J. De la Fuente, , C. Pérez, , E. G. de Chavarri, M. T. Díaz, F. Torrent, and M. Villarroel. 2019. Physio-metabolic response of rainbow trout during prolonged food deprivation before slaughter. Fish Physiology and Biochemistry, 45(1), 253–265.
https://link.springer.com/article/10.1007/s10695-018-0559-0
Caruso, G., Denaro, M. G., Caruso, R., De Pasquale, F., Genovese, L., & Maricchiolo, G., 2014. Changes in digestive enzyme activities of red porgy Pagrus pagrus during a fasting–refeeding experiment. Fish Physiology and Biochemistry, 40(5), 1373–1382. https://link.springer.com/article/10.1007/s10695-014-9931-x
Chan, C.-R., Lee, D.-N., Cheng, Y.-H., Hsieh, D. J.-Y., & Weng, C.-F., 2008. Feed deprivation and refeeding on alterations of proteases in tilapia Oreochromis mossambicus. Zoological Studies-Taipei-, 47(2), 207. http://zoolstud.sinica.edu.tw/Journals/47.2/207.pdf
Escalante-Rojas, M., Martínez-Brown, J. M., Ibarra-Castro, L., Llera-Herrera, R., & García-Gasca, A. 2020. Effects of feed restriction on growth performance, lipid mobilization, and gene expression in rose spotted snapper (Lutjanus guttatus). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 190(3), 275–286.
https://link.springer.com/article/10.1007/s00360-020-01268-3
Fadhal, A. A., and S. A. Mustafa. 2020. Influence of phytase enzyme on growth performance and survival rate challenged with saprolegnia spp. in common carp. Iraqi Journal of Agricultural Sciences, 51(5):1458-1465. https://doi.org/10.36103/ijas.v51i5.1156
Falahatkar, B., (2012). The metabolic effects of feeding and fasting in beluga Huso huso. Marine Environmental Research, 82, 69–75. https://www.sciencedirect.com/science/article/abs/pii/S0141113612001638
Fang, Z., Tian, X., & Dong, S. (2017). Effects of starving and refeeding strategies on the growth performance and physiological characteristics of the juvenile tongue sole (Cynoglossus semilaevis). Journal of Ocean University of China, 16, 517-524. https://link.springer.com/article/10.1007/s11802-017-3198-7
Ferreira, L. S. B. P., & Nuñer, A. P. D. O. 2015. Food deprivation and compensatory growth in juvenile piava, Leporinus obtusidens. Bol. Inst. Pesca, São Paulo, 41(3), 471-478. https://www.researchgate.net/profile/AlexNuner/publication/289662356_Food_deprivation_and_compensatory_growth_in_juvenile_piava_Leporinus_obtusidens/links/5707f13c08
Florescu, I. E., Burcea, A., Popa, G. O., Dudu, A., Georgescu, S. E., Balaş, M., Dinescu, S., Voicu, S., Grecu, I., Dediu, L., Dinischiotu, A., & Costache, M. 2019. Effects of starvation and refeeding on growth performance and stress defense mechanisms of stellate sturgeon Acipenser stellatus juveniles from aquaculture. Acta Biochimica Polonica, 66(1), 47–59.
https://ojs.ptbioch.edu.pl/index.php/abp/article/view/2712
Furné, M., García-Gallego, M., Hidalgo, M. C., Morales, A. E., Domezain, A., Domezain, J., & Sanz, A., 2008. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 149(4), 420–425. https://www.sciencedirect.com/science/article/pii/S109564330800038X
Gangadhar, B., Sridhar, N., Umalatha, H., Ganesh, H., Simon, A. R. T., & Jayasankar, P. 2017. Digestibility and digestive enzyme activity in Labeo fimbriatus (Bloch, 1795) fed periphyton grown on sugarcane bagasse. Indian Journal of Fisheries, 64(1), 37–43. https://www.researchgate.net/profile/Gangadhara-B/publication/315726949 Digestibility_and_digestive_enzyme_activity_in_Labeo_fimbriatus_Bloch_1795_fed_periphyton_grown_on_sugarcane_bagasse/links/58df42bea6fdcc41bf8ea2d3/Digestibility-and-digestive-enzyme-activity-in-Labeo-fimbriatus-Bloch-1795-fed-periphyton-grown-on-sugarcane-bagasse.pdf
Garcia-Carreno, F.L., & Haard, N.F., 1993. Characterization of proteinase classes in Langostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J. Food Biochem. 17, 97– 113. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1745-4514.1993.tb00864.x
Gisbert E, Fernandez I, Alvarez-Gonzalez C.A., 2011. Prolonged feed deprivation does not permanently compromise digestive function in migrating European glass eels Anguilla anguilla. Journal of Fish Biology 78: 580–592. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1095-8649.2010.02879.x
Hummel, B. C. W., 1959. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin, Canadian Journal of Biochemistry and Physiology. 37(12), pp. 1393–1399. https://cdnsciencepub.com/doi/abs/10.1139/o59-157
Jafari, N., Falahatkar, B., & Sajjadi, M. M., 2018. Growth performance and plasma metabolites in juvenile Siberian sturgeon Acipenser baerii (Brandt, 1869) subjected to various feeding strategies at different sizes. Fish Physiology and Biochemistry, 44(5), 1363–1374. https://link.springer.com/article/10.1007/s10695-018-0527-8
Kawanago, M., Takemura, S., Ishizuka, R., & Shioya, I., 2014. Plasma components and hepatic insulin-like growth factor expression indicate nutritional status in yellowtail Seriola quinqueradiata. North American Journal of Aquaculture, 76(2), 143–152. https://www.tandfonline.com/doi/abs/10.1080/15222055.2014.886649
Klahan, R., Areechon, N., Yoonpundh, R., and Engkagul, A., 2009. Characterization and activity of digestive enzymes in different sizes of Nile tilapia (Oreochromis niloticus L.). Kasetsart J. (Nat. Sci.) 43 : 143 – 153. https://li01.tci-thaijo.org/index.php/anres/article/view/244647
Kottelat, M., Whitten, A.J., Kartikasari, S.N., dan Wirjoatmodjo, S., 1993. Freshwater Fishes of Western Indonesia and Sulawesi. Jakarta : Periplus Edition Limited. https://agris.fao.org/agris-search/search.do?recordID=XF2015007041
Kusuma, W. E., Ratmuangkhwang, S., & Kumazawa, Y. 2016. Molecular phylogeny and historical biogeography of the Indonesian freshwater fish Rasbora lateristriata species complex (Actinopterygii: Cyprinidae): Cryptic species and west-to-east divergences. Molecular phylogenetics and evolution, 105, 212-223. https://www.sciencedirect.com/science/article/abs/pii/S105579031630207X
Lallès, J. 2020. Intestinal alkaline phosphatase in the gastrointestinal tract of fish: biology, ontogeny, and environmental and nutritional modulation. Reviews in Aquaculture, 12(2), 555–581. https://onlinelibrary.wiley.com/doi/abs/10.1111/raq.12340
Liu, W., Wei, Q. W., Wen, H., Jiang, M., Wu, F., & Shi, Y., 2011. Compensatory growth in juvenile Chinese sturgeon (Acipenser sinensis): effects of starvation and subsequent feeding on growth and body composition. Journal of Applied Ichthyology, 27(2), 749–754. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1439-0426.2011.01723.x
Liu, X., Shi, H., He, Q., Lin, F., Wang, Q., Xiao, S., Dai, Y., Zhang, Y., Yang, H., & Zhao, H. 2020. Effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in hybrid grouper (Epinephelus fuscoguttatus♀× E. lanceolatus♂). Fish & Shellfish Immunology, 97, 182–193.
https://www.sciencedirect.com/science/article/abs/pii/S1050464819310988
Mohammed, A. M., and M.S.Al-Khshali. 2023. Effect of fertilization on growth characteristics of cyprinus carpio cultured in rice fields in iraq. Iraqi Journal of Agricultural Sciences,54(2):447-454. https://doi.org/10.36103/ijas.v54i2.1719
Mohammad, M. A., and W. A. Qasab Bashi. 2020. Effect of partial substitution spirulina instead of soybean meal in common carp cyprinus carpio L. diet on some blood picture and some biochemical criteria. Iraqi Journal of Agricultural Sciences,51(6):1740-1746. https://doi.org/10.36103/ijas.v51i6.1202
Morshedi, V., Kochanian, P., Ahmadi-Niko, M., Azodi, M., & Pasha-Zanoosi, H. 2013. Compensatory growth response of sailfin molly, Poecilia latipinna (Lesueur, 1821) to starvation and refeeding. International Journal of Aquatic Biology, 1(3), 109–115. http://ij-aquaticbiology.com/index.php/ijab/article/view/59
Mubarak, A.Sh., K. T. Pursetyo and A. Monica. 2020. Quality and quantity of ephipia moina macrocopa resulting from mating using tilapia fish feces suspension feed. Iraqi Journal of Agricultural Sciences, 51(Special Issue):157-167. https://doi.org/10.36103/ijas.v51iSpecial.893
Naghshpour, S., Bozorgnia, A., Hoseinifard, S. M., & Javadian, S. R. 2021. The effect of short starvation and refeeding on growth performance, hematological, and morphological responses in juvenile beluga (Huso huso). Iranian Journal of Fisheries Sciences, 20(6), 1775–1788. https://jifro.areeo.ac.ir/article_125500.html
Nielsen, S. S. 2017. Food analysis laboratory manual. Springer. https://link.springer.com/book/10.1007/978-3-319-44127-6
Pang, X., Fu, S. J., Li, X. M., & Zhang, Y. G. 2016. The effects of starvation and refeeding on growth and swimming performance of juvenile black carp (Mylopharyngodon piceus). Fish Physiology and Biochemistry, 42(4), 1203–1212.
https://link.springer.com/article/10.1007/s10695-016-0210-x
Paz, A. de L., Pastrana, Y. M., & Brandão, L. V. 2018. Food deprivation does not affect growth performance of juvenile tambacu. Acta Amazonica, 48(3), 207–210. https://www.scielo.br/j/aa/a/PsjzLkZDhDpWHsMcMbNPNYP/abstract/?lang=en
Peter, M., Lv, H., Jiang, X., Liu, Y., Hur, J., Esbon, M., … Gao, Y., 2020. Effects of starvation on enzyme activities and intestinal microflora composition in loach (Paramisgurnus dabryanus). Aquaculture Reports, 18, 100467.
https://www.sciencedirect.com/science/article/pii/S2352513420305573
Retnoaji, B., Nurhidayat, L., & Husni, A. 2017. Cultivation and Conservation of Indonesian Native Fish (Rasbora lateristriata) Through Fish Farmer Group Empowerment in Yogyakarta. In Proceeding of the 1st International Conference on Tropical Agriculture (pp. 475-482). Springer International Publishing.
https://link.springer.com/chapter/10.1007/978-3-319-60363-6_50
Rossi, A., Cazenave, J., Bacchetta, C., Campana, M., & Parma, M. J. 2015. Physiological and metabolic adjustments of Hoplosternum littorale (Teleostei, Callichthyidae) during starvation. Ecological indicators, 56, 161-170.
https://www.sciencedirect.com/science/article/abs/pii/S1470160X15001727
Sakyi, M. E., Cai, J., Tang, J., Xia, L., Li, P., Abarike, E. D., Kuebutornye, F. K. A., & Jian, J. 2020. Short term starvation and refeeding in Nile tilapia (Oreochromis niloticus, Linnaeus 1758): Growth measurements, and immune responses. Aquaculture Reports, 16(1), 100261. https://www.sciencedirect.com/science/article/pii/S2352513419303175
Sentosa, A.A., & Djumanto, (2010). Habitat pemijahan ikan wader pari (Rasbora lateristriata ) di sungai Ngrancah, Kabupaten Kulon Progo. Jurnal Ikhtiologi Indonesia, 10(1): 55-63. http://www.jurnal-iktiologi.org/index.php/jii/article/view/178
Silva, W. de S., Hisano, H., Mattioli, C. C., Torres, I. F. A., de Oliveira Paes-Leme, F., & Luz, R. K. 2019. Effects of cyclical short-term fasting and refeeding on juvenile Lophiosilurus alexandri, a carnivorous Neotropical catfish. Aquaculture, 505, 12–17. https://www.sciencedirect.com/science/article/abs/pii/S0044848618321082
Suryani, S. A. M. P., Arya, I. W., & Kawan, I. M. 2019, December. Longitudinal distribution and population structure Rasbora lateristriata Bleeker, 1854 (Osteichthyes: Cyprinidae) in Sungi River. In Journal of Physics: Conference Series (Vol. 1402, No. 3, p. 033064). IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/1402/3/033064/meta
Suryani, S. A. M. P., Wirawan, I. G. P., Dwiyani, R., & Sritamin, M. 2021, March Genetic diversity and differentiation of cytochrome oxidase subunit I (COI) gene of Rasbora lateristriata Bleeker in different habitat. In IOP Conference Series: Materials Science and Engineering (Vol. 1098, No. 5, p. 052043). IOP Publishing. https://iopscience.iop.org/article/10.1088/1757-899X/1098/5/052043/meta
Susilo, U., Sukardi, P., & Affandi, R., (2018). The Age Dependent Activities of Digestive Enzymes in Rasbora, Rasbora lateristriata, (Pisces: Cyprinidae). Molekul, 13(1), 80–91. https://ojs.jmolekul.com/ojs/index.php/jm/article/view/418
Susilo, U., Sukardi, P., & Affandi, R.,(2016). Alkaline protease, amylase and cellulase activities of yellow Rasbora, Rasbora lateristriata Blkr., at different feeding levels. Molekul, 11(2), 190–201. https://ojs.jmolekul.com/ojs/index.php/jm/article/view/254
Tamadoni, R., Nafisi Bahabadi, M., Morshedi, V., Bagheri, D., & Torfi Mozanzadeh, M. 2020. Effect of short‐term fasting and refeeding on growth, digestive enzyme activities and antioxidant defense in yellowfin seabream, Acanthopagrus latus (Houttuyn, 1782). Aquaculture Research, 51 (4), 1437-1445
https://onlinelibrary.wiley.com/doi/abs/10.1111/are.14489
Taşbozan, O., Emre, Y., Gökçe, M. A., Erbaş, C., Özcan, F., & Kıvrak, E. 2016. The effects of different cycles of starvation and refeeding on growth and body composition in rainbow trout (Oncorhynchus mykiss, Walbaum, 1792). Journal of Applied Ichthyology, 32(3), 583-588.
https://onlinelibrary.wiley.com/doi/abs/10.1111/jai.13045
Thongprajukaew, K., Kovitvadhi, S., Kovitvadhi, U., & Preprame, P. 2017. Effects of feeding frequency on growth performance and digestive enzyme activity of sex-reversed Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). Agriculture and Natural Resources, 51(4), 292-298. https://www.sciencedirect.com/science/article/pii/S2452316X1730515X
Thongprajukaew, K., Kovitvadhi, U., Engkagul, A., and Rungruangsak-Torrissen, K., 2010. Temperature and pH characteristics of amylase and lipase at different development stages of siamese fighting fish (Betta splendens Regan, 1910). Kasetsart J (Nat. Sci.) 44: 210-219. https://li01.tci-thaijo.org/index.php/anres/article/view/244908
Urbinati, E. C., Sarmiento, S. J., & Takahashi, L. S. (2014). Short-term cycles of feed deprivation and refeeding promote full compensatory growth in the Amazon fish matrinxã (Brycon amazonicus). Aquaculture, 433, 430-433. https://www.sciencedirect.com/science/article/abs/pii/S0044848614003251
Walter, K., & Schütt, C. 1974. Alkaline phosphatase in serum: continuous assay. In Methods of enzymatic analysis (pp. 860-864). Academic Press. https://www.sciencedirect.com/science/article/pii/B9780120913022500682
Wu, X. Y., Chen, Y. Y., Lai, J. S., Liu, Y., Song, M. J., Gong, Q., & Long, Z. H. 2021. Effects of starvation and refeeding on growth performance, appetite, growth hormone-insulin-like growth factor axis levels and digestive function of Acipenser dabryanus. British Journal of Nutrition, 126(5), 695–707. https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/effects-of-starvation-and-refeeding-on-growth-performace-appetite-ghigfs-axis-levels-and-digestive-function-of-acipenser-dabryanus/BBAA02DD42D12659D654DA747A59E31D
Xu, C., Li, X.-F., Tian, H.-Y., Jiang, G.-Z., & Liu, W.-B., 2016. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala. Fish Physiology and Biochemistry, 42(2), 689–700. https://link.springer.com/article/10.1007/s10695-015-0169-z
Yarmohammadi, M., Pourkazemi, M., Kazemi, R., Pourdehghani, M., Hassanzadeh Saber, M., & Azizzadeh, L., 2015. Effects of starvation and refeeding on some hematological and plasma biochemical parameters of juvenile Persian sturgeon, Acipenser persicus Borodin, 1897. Caspian Journal of Environmental Sciences, 13(2), 129–140. https://aquadocs.org/handle/1834/10490
Yengkokpam, S., Debnath, D., Pal, A. K., Sahu, N. P., Jain, K. K., Norouzitallab, P., & Baruah, K., 2013. Short-term periodic feed deprivation in Labeo rohita fingerlings: effect on the activities of digestive, metabolic and anti-oxidative enzymes. Aquaculture, 412, 186–192. https://www.sciencedirect.com/science/article/abs/pii/S0044848613003517
Zaefarian, A., Yeganeh, S., & Ouraji, H., 2020. The Effects of starvation and refeeding on growth and digestive enzymes activity in Caspian brown trout (Salmo caspius Kessler, 1877) fingerlings. Iranian Journal of Fisheries Sciences, 19(3), 1111–1129. https://jifro.ir/article-1-3422-fa.html
Zeng, L.-Q., Li, F.-J., Li, X.-M., Cao, Z.-D., Fu, S.-J., & Zhang, Y.-G., 2012. The effects of starvation on digestive tract function and structure in juvenile southern catfish (Silurus meridionalis Chen). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 162(3), 200–211. https://www.sciencedirect.com/science/article/pii/S1095643312000517
Zhou, R., Wu, G., Qu, L., Zhong, X., Gao, Y., Ding, Z.,. and Cheng, H. 2022. Effect of starvation on intestinal morphology, digestive enzyme activity and expression of lipid metabolism‐related genes in javelin goby (Synechogobius hasta). Aquaculture Research, 53(1), 87-97.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.