USING N-OVEL COATED SAND AS REACTIVE BED IN PERMEABLE BARRIER FOR ELIMINATION OF METHYL ORANGE DYE FROM GROUNDWATER*

Authors

  • Ahmed H. Shihab
  • Ayad A.H. Faisal

DOI:

https://doi.org/10.36103/ijas.v53i5.1620

Keywords:

solute transport; methyl orange dye; alum; nanoparticles; cement kiln dust; permeable reactive barrier.

Abstract

This study investigates the efficacy of sand coated with calcium / aluminum (Ca/Al)-layered double hydroxide (LDH) in the elimination of methyl orange dye from simulated groundwater using method of permeable reactive barrier. For green (sustainable) manufacturing of this sand, aluminum prepared from dissolution of alum (cheap coagulant) can be interacted chemically with calcium extracted from cement kiln dust byproduct to create nanoparticles of Ca and Al that precipitate on the filter sand. Sorption measurements for interaction of methyl orange dye and coated sand was well formulated by Langmuir model with highest value of correlation (determination coefficient= 0.999) and lowest errors (sum of squared errors= 0.0122). Also, the maximum capacity of adsorption was valued of 0.9453 mg/g and the sorption curve can classify as “favorable” type. According to desorption measurements, little percentage of dye (0.91%) can desorb from exhausted coated sand through washing with water due to strength of bonding between sorbent and dye molecules. Also, the exhausted sorbent can regenerate with efficiency not less than 85% after eight of regeneration cycles. Finally, measurements of breakthrough curves in the continuous mode operation using column setup proved that the propagation of dye front (and consequently the longevity of barrier) would increase significantly with thicker barrier and lowest values of influent concentration and flow rate. COMSOL (computer solution) package can use effectively in the simulation of these curves.         

References

Abdulkareem, H. N. and A. I. Alwared, 2019. Immobilization dried mix of algae for copper removal. Iraqi Journal of Agricultural Sciences, 50(3),800–808. doi:10.36103/ijas.v50i3.697

Abdulkareem, P. M. and S. S. Anwer, 2021. Uptake of different dyes by two new strains of microalgal dry biomass. Iraqi Journal of Agricultural Sciences, 52(1),48–62. doi:10.36103/IJAS.V52I1.1235

Ahmed, D. N.; L. A. Naji, A. A. H. Faisal, N. Al-Ansari and M. Naushad, 2020. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution. Scientific Reports, 10(1). doi:10.1038/s41598-020-58866-y

Alquzweeni, S. S. and A. A. H. Faisal, 2020. Removal of lead ions from aqueous solution using granular iron slag byproduct as permeable reactive barrier. Iraqi Journal of Agricultural Sciences, 51(2),723–733. doi:10.36103/ijas.v51i2.1000

Ammar, S. H.; H. J. Khadim and A. Al-Farraji, 2020. Synthesis of Ni@γ-Al2O3@PIDSiW recyclable nanocatalyst and its catalytic reduction and antibacterial activities. Nanotechnology for Environmental Engineering, 5(2),1–11. doi:10.1007/s41204-020-00082-0

Bo, A.; S. Sarina, H. Liu, Z. Zheng, Q. Xiao, Y. Gu, G. A. Ayoko and H. Zhu, 2016. Efficient removal of cationic and anionic radioactive pollutants from water using hydrotalcite-based getters. ACS Appl. Mater. Interfaces, 8(4),16503–16510

Chen, Z.; D. Mu, F. Chen and N. Tan, 2019. NiFe2O4@ nitrogen-doped carbon hollow spheres with highly efficient and recyclable adsorption of tetracycline. RSC Advances,. doi:10.1039/c9ra00670b

Copaja, S. V.; L. Mauro, C. Vega-Retter and D. Véliz, 2020. Adsorption-desorption of trace elements in sediments of the Maipo river basin. Journal of the Chilean Chemical Society, 65(2),4778–4783. doi:10.4067/S0717-97072020000204778

Delleur, J. W., 1999. The Handbook Of Groundwater Engineering,. Boca Raton: CRC Press. doi:10.5860/choice.pp:36-4507

Elmoubarki, R.; F. Mahjoubi, A. Elhalil, H. Tounsadi, M. Abdennouri, M. Sadiqa, S. Qourzal, A. Zouhri and N. Barka, 2017. Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal. Journal of Materials Research and Technology, 6(3),271–283

Faisal, A. A. H.; S. S. Alquzweeni, L. A. Naji and M. Naushad, 2020. Predominant mechanisms in the treatment of wastewater due to interaction of benzaldehyde and iron slag byproduct. International Journal of Environmental Research and Public Health, 17(1),226. doi:10.3390/ijerph17010226

Faisal, A. A. H.; A. H. Shihab, M. Naushad, T. Ahamad, G. Sharma and K. M. Al-Sheetan, 2021. Green synthesis for novel sorbent of sand coated with (Ca/Al)-layered double hydroxide for the removal of toxic dye from aqueous environment. Journal of Environmental Chemical Engineering. 9(4),105342. doi:10.1016/j.jece.2021.105342

Fetter, C. W., 1999. Contaminant Hydrogeology,. ;2nd ed. Prentice-Hall, New Jersey. pp:303

Foo, K. Y. and B. H. Hameed, 2010. Insights into the modeling of adsorption isotherm systems, Chemical engineering journal, 156(1),2–10

Goh, K. H.; T. T. Lim, and Z. Dong, 2008. Application of layered double hydroxides for removal of oxyanions: A review. Water Research, 42(7),1343–1368

Hamdaoui, O. and E. Naffrechoux, 2007. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbonPart II. Models with more than two parameters. Journal of Hazardous Materials, 147(1–2),401–411. doi:10.1016/j.jhazmat.2007.01.023

Ho, Y. S.; J. F. Porter and G. McKay, 2002. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, Air, and Soil Pollution, 141(1–4),1–33. doi:10.1023/A:1021304828010

Khudhair, E. M.; S. H. Ammar and H. J. Khadim, 2021. Phosphotungstic acid immobilized onto ZnO coated zerovalent iron (Fe@ZnO/PW) core/shell magnetic nanocomposite for enhanced photocatalytic bacterial inactivation under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 404(3),112907. doi:10.1016/j.jphotochem.2020.112907

Ko, D. C. K.; J. F. Porter and G. McKay, 2000. Optimised correlations for the fixed-bed adsorption of metal ions on bone char. Chemical Engineering Science, 55(23),5819–5829. doi:10.1016/S0009-2509(00)00416-4

Liang, X.; Y. Zang, Y. Xu, X. Tan, W. Hou, L. Wang and Y. Sun, 2013. Sorption of metal cations on layered double hydroxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 433(3),122–131

Liao, P.; Z. Zhan, J. Dai, X. Wu, W. Zhang, K. Wang, and S. Yuan, 2013. Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: A batch and fixed-bed column study, Chemical Engineering Journal, 228(12),496–505. doi:10.1016/j.cej.2013.04.118

Naji, L. A.; S. H. Jassam, M. J. Yaseen, A. A. H. Faisal and N. Al-Ansari, 2020. Modification of Langmuir model for simulating initial pH and temperature effects on sorption process. Separation Science and Technology (Philadelphia), 55(15),2729–2736. doi:10.1080/01496395.2019.1655055

Puls, R. W.; R. M. Powell, D. W. Blowes, J. L. Vogan, R. W. Gillham, P. D. Powell, D. Schultz, T. M. Sivavec and R. Landis, 1998. Permeable reactive barriers technologies for contaminant remediation. United States Environ- mental Protection Agency,. Washington, DC.pp:401

Rai, M. K.; G. Shahi, V. Meena, R. Meena, S. Chakraborty, R. S. Singh and B. N. Rai, 2016. Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resource-Efficient Technologies, 2(1),S63–S70. doi:10.1016/j.reffit.2016.11.011

Robinson, T.; G. McMullan, R. Marchant and P. Nigam, 2001. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77(3),247–255. doi:10.1016/S0960-8524(00)00080-8

Safarik, I.; L. F. T. Rego, M. Borovska, E. Mosiniewicz-Szablewska, F. Weyda and M. Safarikova, 2007. New magnetically responsive yeast-based biosorbent for the efficient removal of water-soluble dyes. Enzyme and Microbial Technology, 40(6),1551–1556. doi:10.1016/j.enzmictec.2006.10.034

Sahoo, J. K.; A. Kumar, J. Rath, T. Mohanty, P. Dash and H. Sahoo, 2017. Guar gum-coated iron oxide nanocomposite as an efficient adsorbent for Congo red dye. desalination and water treatment, 95(4),342–354. doi:10.5004/dwt.2017.21572

Sahoo, J. K.; S. K. Paikra, M. Mishra and H. Sahoo, 2019. Amine functionalized magnetic iron oxide nanoparticles: Synthesis, antibacterial activity and rapid removal of Congo red dye, Journal of Molecular Liquids. 282(1),428–440. doi:10.1016/j.molliq.2019.03.033

Ujfaludi, L., 1986. Longitudinal dispersion tests in non-uniform porous media, Hydrological Sciences Journal, 31(3),467–474

Wang, L. and A. Wang, 2007. Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. Journal of Hazardous Materials, 147(3),979–985. doi:10.1016/j.jhazmat.2007.01.145

Yao, S.; M. Fabbricino, M. Race, A. Ferraro, L. Pontoni, O. Aimone and Y. Chen, 2020. Study of the digestate as an innovative and low-cost adsorbent for the removal of dyes in wastewater. Processes, 8(7),852. doi:10.3390/pr8070852

Zyoud, A.; A. Zu’bi, M. H. S. Helal, D. Park, G. Campet and H. S. Hilal, 2015. Optimizing photo-mineralization of aqueous methyl orange by nano-ZnO catalyst under simulated natural conditions. Journal of Environmental Health Science and Engineering, 13(1),46. doi:10.1186/s40201-015-0204-0

Downloads

Published

2022-10-25

Issue

Section

Articles

How to Cite

“USING N-OVEL COATED SAND AS REACTIVE BED IN PERMEABLE BARRIER FOR ELIMINATION OF METHYL ORANGE DYE FROM GROUNDWATER*” (2022) IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 53(5), pp. 1067–1077. doi:10.36103/ijas.v53i5.1620.

Similar Articles

1-10 of 93

You may also start an advanced similarity search for this article.