Iridaceae, leaves extraction, coloring degradation, removal, antimony trioxide.


The present research was conducted to the Gynandris sisyrinchium (L.) Parl. leaves extract to identify the phytochemicals present and determine the qualitative presence of phenols and flavonoids. The GC-MS findings have different peaks to determine the existence of 23 phytochemical compounds which may have a role in pharmacological activities. On another side, A photocatalytic degradation of extracted dye using ZnO and Sb2O3 was tested, which is done by the photodegrade of a suspended aqueous solution of extracted dye with 0.17gm/100ml of semiconductor starting with ZnO then Sb2O3 under UV lamp (125 Watts) at 298 K. To reach the best photodegradation several experiments have been carried out. Started by the effect on the photocatalytic degradation of the extracted colorant of the semiconductor and the effect of the dye concentration extracted. Using UV-Vis spectrophotometer, the products were tested. It can be noted, from all experiments, that the employing of zinc oxide as a photocatalyst was found to be more effective than Sb2O3 to degradation of dye.


Aburjai, T.; B.Amro; S. Al-Khalil; and D. Al-Eisawi. 2000. Acta Technologiae et Legis Medicamenti, 11(3): 137-145

Ahmed, M.A.; E. E. El-Katori and Z. H. Gharni. 2013. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method, Journal of Alloys and Compounds, 553 (1) :19–29

Al-Gubury H. Y.; H. J. M. Altameme and M. M. Ali. 2018. Significant enhancement of photocatalytic activity of Zinc Oxide by extracted anthocyanin pigment and solar light. Plant Archives .18 (2):2723-2726

Algubury, H. Y. 2016. Study the activity of Titanium dioxide nanoparticle using orange G dye, Malaysian Journal of Science 35 (2): 319- 330

Al-gubury, H. Y. and Q. Y. Mohammed. 2016. Prepared coupled ZnO–CO2O3 then study the photocatalytic activities using crystal violet dye, Journal of Chemical and Pharmaceutical Sciences, 9(3):1161-1165

Al-Qudah, M. A.; A. M. Saleh ; H. I.Al-Jaber; H. I. Tashtoush; J. N. Lahham ; M. H. Abu Zarga; F. U. Afifi and S. T. Abu Orabi. 2015. New isoflavones from Gynandriris sisyrinchium and their antioxidant and cytotoxic activities. Fitoterapia, 107: 15-21

Al-Qudah, M. A.; R. Muhaidat; I. N. Trawenhc; H. I. Al Jaberd; M. H. Abu Zargae and S. T. Abu orabia. 2012. Volatile constituents of leaves and bulbs of Gynandriris sisyrinchium and their antimicrobial activities. Jordan Journal of Chemistry. 7 (3):287-295.

Altameme H. J. M. 2018. Phytochemical Analysis of Frankenia Aucheri Jaub. Et Spach (Frankeniaceae) By GC-MS and FT-IR Techniques. Plant Archives 18 (2): 2263-2269

Altameme, H. J. M. 2016. GC-MS and FTIR analysis Phytocomponents on different parts of Capparis spinosa L. (Capparidaceae) in Iraq. Journal of Chemical and Pharmaceutical Sciences 9(4): 3269-3282

Altameme, H. J. M and I. A. Ibraheam, 2019. RAPD and ISSR analysis of the genetic relationship among some species in Rutaceae and Apiceae in Iraq. Iraqi Journal of Agricultural Sciences, 2(50): 608-616

El Shabrawy, M. O.A.; M. M. Marzouk; S. A. Kawashty; H. A. Hosni; I. A. El Garf and N.A.M. Saleh. 2013. Flavonoids from Moraea sisyrinchium (L.) Ker Gawl. (Iridaceae) in Egypt. International Conference on Applied Life Sciences (ICALS2013), UAE. September:15-17

Hameed, I. H.; H. J. Altameme and S. A. Idan. 2016. Artemisia annua: Biochemical products analysis of methanolic aerial parts extract and anti-microbial capacity. Research Journal of Pharmaceutical, Biological and Chemical Sciences,7(2): 1843-1868.

Harborne, J. B. 1984. Phytochemical Methods: A Guide to Modern Technique of Plant Analysis. 2nd. ed. Chapman and Hall. London, UK. PP:286

Jasim, H.; A.M. Hussein; I.H. Hameed and M.A. Kareem. 2015. Characterization of alkaloid constitution and evaluation of antimicrobial activity of Solanum nigrum by using (GC-MS), Journal of Pharmacognosy and Phytotherapy, 7(4):56-72

Mahadwad, O.K.; P.A. Parikh; R.V. Jasra and C. Patil. 2012. Photocatalytic degradation of reactive black-5 dye using TiO2-impregnated activated carbon, Environmental Technology, 33(3): 307–312

Rajesh J. Tayadea; K. S. Praveen; G. K. Ramchandra and V. J. Raksh 2007. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2, Science and Technology of Advanced Materials ,8: 455–462

Rokhsareh, S. S.; M. Maryam and N. Nasiri 2016. Synthesis, characterization and application of Lanthanide metal-ion-doped TiO2 bentonite nanocomposite for removal of Lead (II) and Cadmium (II) from aquatic media, J. Water Environ. Nanotechnology., 1(1): 35-44

Sohrabi, M.R. and M. Ghavami. 2008. Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters, Journal of Hazardous Materials,153: 1235–1239

Townsend C.C. and E. Guest. 1985. Flora of Iraq, Vol. 8, Baghdad: Ministry of Agriculture and agrarian reform republic of Iraq pp: 232-235

Wahyuni S.; E. A. Saati; S. Winarsih ; E. Susetyarini and T.W. Rochmah. 2020. the combination of dragon fruits skin and teak leaves anthocyanin extract as soymilk’s natural dye. Iraqi Journal of Agricultural Sciences, 51(4), 1188-1194.

Yang, J.; J. Dai; J. Zhao; and J. Miao. 2010. Mechanism of photocatalytic degradation of dye MG by TiO2-film electrode with cathodic bias potential, Chinese Sci Bull,.55 (2):201-211

Zeki, S. L. and M.J. M-Ridha, 2020. Phytoremediation of synthetic wastewater containing copper by using native plant. Iraqi Journal of Agricultural Sciences, 51(6), 1160-1612.




How to Cite

Altameme, H. J. M., Al-gubury, H. Y. and Ismeel, M. A. (2022) “) PARL”., IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 53(5), pp. 965–976. doi: 10.36103/ijas.v53i5.1610.