EXTRACTING GELATIN FROM OSTRICH BONES, ITS CHARACTERIZATION AND USE IN SOME FOOD SYSTEMS
DOI:
https://doi.org/10.36103/thp58h89Keywords:
Functional and Sensory Properties; Gelatin Extraction; Gel Strength; Gummy Candies; Ostrich Gelatin; Physicochemical propertiesAbstract
The current study focused on producing gelatin from ostrich bone and analyzing its chemical composition. It also studied the physical, chemical, and functional properties. The results indicated that gelatin contained protein, ash, and moisture in percentages of 82.13%, 3.32%, and 14.54%, respectively. Additionally, the gelatin had a high concentration of amino acids, as determined by amino acid analysis. The functional properties of the gelatin were identified using FTIR spectroscopy. The gelatin exhibited a gel strength of 259 g, which falls within the higher gel strength range of 200-300g. Furthermore, gelatin displayed positive values for dl (lighter/darker), da (redder/greener), and db (yellower/bluer). This indicated it had a lighter, redder, and yellower color. It has a pH value of 4.01, while its water holding capacity amounted to 15.24 mL/g, and its solubility was high, as it was 85.22%. Also, the prepared gelatin possessed other functional properties, such as foaming and emulsion capacity. So, it was (87.66, 53.21) %, respectively. Oil binding capacity amounted to 2.65 ml/gm, enabling it to use this gelatin to manufacture various food products to improve functions and develop food good sensory (smell, taste, color, texture, and general acceptance), so the candy evaluation score was very acceptable, as it got scores from (80-100).
References
1. Ab Rahim, H., H. Ahmad, and M. H. Ab Rahim, 2021. Extraction of Gelatin from Different Parts of Gallus Gallus Domesticus. Current Science and Technology, 1(1), 50-55. https://doi.org/10.15282/cst.v1i1.6447.
2. Ahamed, B. A. R. 1999. Studying Sensory, Chemical and Functional Properties at Various Periods of Storage of Extracted Gelatin from Bones. A Thesis. College of Agriculture, University of Basrah75p.
3. Aidat, O., L. Belkacemi, M. Belalia, M. khairi Zainol, and H. S. Barhoum, 2023. Physicochemical, rheological, and textural properties of gelatin extracted from chicken by-products (feet-heads) blend and application. International Journal of Gastronomy and Food Science., 32, 100708. https://doi.org/10.1016/j.ijgfs.2023.100708.
4. Al-Baidhani, A. M., S. M. Al-Shatty, A. R. Al-Hilphy, and M. Gavahian, 2024. Valorization of Melissa Pomegranate Peels and Seeds Waste to Obtain Extracts for Increasing the Shelf-Life of Chicken Patties During Cold Storage. Waste and Biomass Valorization, 1-14. https://doi.org/10.1007/s12649-024-02483-7.
5. Al-Baidhani, A. M., A. E. Al-Mossawi, 2019. Chemical indicators of ostrich struthio camelus linnaeus, 1758 meat burger prepared by adding different fat levels during frozen storage. Basrah J. Agric. Sci. 32, 16–22. https://doi.org/10.37077/25200860.2019.183.
6. Al-ghanimi, G. M. M., and A. M. Alrubeii. 2024. Effect of elastin hydrolysate on bacteria and some sensory traits of chilled ground beef. Iraqi Journal of Agricultural Sciences, 55(1):422-431. https://doi.org/10.36103/8w3frt36
7. Ataie, M. J., S. P. H. Shekarabi, and S. H. Jalili, 2019. Gelatin from bones of bighead carp as a fat replacer on physicochemical and sensory properties of low-fat mayonnaise. The Journal of Microbiology, Biotechnology and Food Sciences, 8:(4), 979. https://doi.org/10.15414/jmbfs.2019.8.4.979-983.
8. Bichukale, A. D., J. M. Koli, A. E. Sonavane, V. V. Vishwasrao, K. H. Pujari, and P. E. Shingare, 2018. Functional properties of gelatin extracted from poultry skin and bone waste. Int. J. Pure Appl. Biosci, 6(4), 87-101. http://dx.doi.org/10.18782/2320-6768.
9. Cebi, N., C. E. Dogan, A. E. Mese, D. Ozdemir, M. Arıcı, and O. Sagdic, 2019. A rapid ATR-FTIR spectroscopic method for classification of gelatin gummy candies in relation to the gelatin source. Food chemistry. 2019,277, 373-381. https://doi.org/10.1016/j.foodchem.2018.10.125.
10. Dahl-Lassen, R., van J. Hecke, H., C Bukh,. B. Andersen, and J. K. Schjoerring, Jørgensen, 2018. High-throughput analysis of amino acids in plant materials by single quadrupole mass spectrometry. Plant Methods, , 14, 1-9. https://doi.org/10.1186/s13007-018-0277-8.
11. Dhakal, D., P. Koomsap, A. Lamichhane, M. B. Sadiq, and A. K. Anal, 2018. Optimization of collagen extraction from chicken feet by papain hydrolysis and synthesis of chicken feet collagen based biopolymeric fibres. Food bioscience., 23, 23-30. https://doi.org/10.1016/j.fbio.2018.03.003.
12. Du, L., Z. Khiari, Z. Pietrasik, and M. Betti, 2013. Physicochemical and functional properties of gelatins extracted from turkey and chicken heads. Poultry science., 92(9), 2463-2474.
https://doi.org/10.3382/ps.2013-03161.
13. Elsanat, S. Y., M. A. Korish, and A. K. Ammar, 2014. Optimizing The Extraction Conditions of Gelatin Obtained from Chicken Processing By-Products. Alexandria Journal of Food Science and Technology., 11(1), 43-52. https://doi.org/10.12816/0025349.
14. Hermida-Merino, C., D. Cabaleiro, L. Lugo, J. Valcarcel, J. A. Vázquez, I. Bravo, and D. Hermida-Merino, 2022. Characterization of tuna gelatin-based hydrogels as a matrix for drug delivery. Gels, 8(4), 237. https://doi.org/10.3390/gels8040237.
15. Jain, S., and A. K. Anal, 2016. Optimization of extraction of functional protein hydrolysates from chicken egg shell membrane (ESM) by ultrasonic assisted extraction (UAE) and enzymatic hydrolysis. LWT-Food Science and Technology., 69, 295-302. https://doi.org/10.1016/j.lwt.2016.01.057.
16. Khiari, Z., D. Rico, A. B. Martin-Diana, and C. Barry-Ryan, 2013. Comparison between gelatines extracted from mackerel and blue whiting bones after different pre-treatments. Food chemistry, , 139(1-4), 347-354. https://doi.org/10.1016/j.foodchem.2013.01.017.
17. Koczoń, P., H. Josefsson, S., Michorowska, K. Tarnowska, D. Kowalska, B. J. Bartyzel, and E. Gruczyńska-Sękowska, 2022. The Influence of the Structure of Selected Polymers on Their Properties and Food-Related Applications. Polymers, 14(10), 1962. https://doi.org/10.3390/polym14101962.
18. Li, F., D. Jia, and K. Yao, 2009. Amino acid composition and functional properties of collagen polypeptide from Yak (Bos grunniens) bone. LWT-Food Science and Technology., 42(5), 945-949. https://doi.org/10.1016/j.lwt.2008.12.005.
19. Lu, Y., Q. Luo, Y. Chu, N. Tao, S. Deng, L. Wang, and L. Li, 2022. Application of gelatin in food packaging: A review. Polymers, 14(3), 436. https://doi.org/10.3390/polym14030436.
20. Malla, K. P., S. Regmi, A., Nepal, S. Bhattarai, R. J. Yadav, S. Sakurai, and R. Adhikari, 2020. Extraction and characterization of novel natural hydroxyapatite bioceramic by thermal decomposition of waste ostrich bone. International journal of biomaterials, https://doi.org/10.1155/2020/1690178.
21. Matinong, A. M. E., Y. Chisti, K. L. Pickering, and R. G. Haverkamp, 2022. Review: Collagen extraction from animal skin. Biology, 11(6), 905. https://doi.org/10.3390/biology11060905.
22. Mrázek, P., P. Mokrejš, R. Gál, and J. Orsavová, 2019. Chicken skin gelatine as an alternative to pork and beef gelatines. Potravinarstvo Slovak Journal of Food Sciences., http://dx.doi.org/10.5219/1022.
23. Mahdi, Al Wahed S.A., F.A. Mahmood, and R. M. Mahmood. 2019. Effect of different concentrations of bovine serum albumin on some of the frozen sperm characteristics of the rams. Plant Archives, 19, 1486–1488.
24. Nelson, J. A., and G. M. Trout, 1965. Judging dairy products. Judging dairy products., (4th edition). Milwaukee, Wisconsin: Olsen Publ. Co.USA.. https://n9.cl/d5gpt.
25. Nielsen, S. S., A. P. Neilson, and S. F. O’Keefe, 2017. Statistics for Food Analysis. Food Analysis Laboratory Manual, 249p. https://doi.org/10.1007/978-3-319-44127-6_4.
26. Ninan, G., 2016. Optimization of process parameters for the extraction of gelatin from the skin of freshwater fish and the evaluation of physical and chemical characteristics (Doctoral dissertation, Faculty of Marine Sciences Cochin University of Science and Technology).. http://dyuthi.cusat.ac.in/purl/2990.
27. Pavan Kumar, D., K. Elavarasan, and B. A. Shamasundar, 2017. Functional properties of gelatin obtained from croaker fish (Johnius sp) skin by rapid method of extraction. International Journal of Fisheries and Aquatic Studies., 5(2), 125-129. https://doi.org/10.1080/10942912.2017.1381702.
28. Rajabimashhadi, Z., N. Gallo, L. Salvatore, and F. Lionetto, 2023. Collagen derived from fish industry waste: progresses and challenges. Polymers, 15(3), 544. https://doi.org/10.3390/polym15030544.
29. Rather, J. A., S. D. Majid, A. H. Dar, T. Amin, H. A. Makroo, S. A. Mir, , ... and B. N. Dar, 2022. Extraction of gelatin from poultry byproduct: Influence of drying method on structural, thermal, functional, and rheological characteristics of the dried gelatin powder. Frontiers in Nutrition, 9, 895197. https://doi.org/10.3389/fnut.2022.895197
30. Robinson, H, and C. Hogden, 1940. The Biuret Reaction in the Determination of Serum Proteins. I. A Study of the Conditions Necessary for the Production of aStable Color which bears a Quantitative Relationship to the Protein. J. Biol. Chem.,135. 707-725. https://doi.org/10.1016/S0021-9258(18)73134-7 .
31. Salleh, E., I. I. Muhamad, and N. Khairuddin, 2009. Structural characterization and physical properties of antimicrobial (AM) starch-based films. International Journal of Biomedical and Biological Engineering., 3(7), 352-360. https://doi.org/10.5281/zenodo.1080268.
32. rubeii, A. M. and G. M. Al-ghanimi, 2024. Effect of elastin hedrolyses on the chemical composition and some oxidation indicators in cold-stored ground beef. Iraqi Journal of Agricultural Sciences, 55(2):885-893. https://doi.org/10.36103/wfj0ra89
33. Samatra, M. Y., N. Q. I. M. Noor, U. H. M. Razali, J. Bakar, and S. M. Shaarani, 2022. Bovidae‐based gelatin: Extractions method, physicochemical and functional properties, applications, and future trends. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3153-3176. https://doi.org/10.1111/1541-4337.12967.
34. Windyasmara, L., A. Pertiwiningrum, N. W. Asmoro, and A. Afriyanti, Chemical quality of chicken bone waste gelatin extracted using chloride acid. Buletin Peternakan, 2018, 42(4), 322-326. http://dx.doi.org/10.21059/buletinpeternak.v42i4.29104.
35. Yam, K. L., and S. E. A. Papadakis, 2004. Simple digital imaging method for measuring and analyzing color of food surfaces. Journal of food engineering., 61(1), 137-142. https://doi.org/10.1016/S0260-8774(03)00195-X.
36. Yun, Lee Seung, On You Kim, Hea Jin Kang, Hyeong Sang Kim, and Sun Jin Hur. 2020. Overview of studies on the use of natural antioxidative materials in meat products. Food Science of Animal Resources, 40(6), 863. doi: 10.5851/kosfa.2020.e84
37. Zainy, Z. I., and A. M. S. Alrubeii, 2023. Effect of replacement nitrite by beetroot and silybum marianum powder in physical characteristics and lipid oxidation for pasterrma. Iraqi Journal of Agricultural Sciences, 54(4), 1131-1136. https://doi.org/10.36103/ijas.v54i4.1806
38. Zeugolis, Maeve Henchion, Mullen, Anne Maria, Carlos Álvarez, Dimitrios I. Eileen O'Neill, and Liana Drummond. 2017. Alternative uses for co-products: Harnessing the potential of valuable compounds from meat processing chains. Meat Science, 132, 90-98. https://doi.org/10.1016/j.meatsci.2017.04.243
39. Zahra, Rastian, Sabine Pütz, YuJen Wang, Sachin Kumar, Frederik Fleissner, Tobias Weidner, and Sapun H. Parekh. 2018. Type I collagen from jellyfish Catostylus mosaicus for biomaterial applications. ACS Biomaterials Science & Engineering, 4(6), 2115-2125. https://doi.org/10.1021/acsbiomaterials.7b00979
40. Zahra Esfandiari, Seid Reza Falsafi, Fuat Topuz, Asli Can Karaca, Seid Mahdi Jafari, and Hadis Rostamabadi. 2023. Recent trends in the application of protein electrospun fibers for loading food bioactive compounds. Food Chemistry: X, 100922. https://doi.org/10.1016/j.fochx.2023.100922
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.