GENETIC DIFFERENTIATION IN POPULATIONS OF THE CORN LEAF APHID RHOPALOSIPHUM MAIDIS (FITCH) HEMIPTERA: APHIDIDAE
DOI:
https://doi.org/10.36103/qbawpt60Keywords:
Microsatellite DNA, cytochrome oxidase I, sorghum, Johnsongrass, parthenogenesisAbstract
The corn leaf aphid is a major pest causes damage to a range of cultivated crops. Little is known about the population genetics of the species. In this experiment, we examined the population genetic structure of the Rhopalosiphum maidis based on nucleotide sequencing of the cytochrome oxidase I (COI) gene and microsatellite analysis. Thirteen microsatellite markers developed for related aphid species were tested for use with R. maidis. Nine loci were found to amplify in R. maidis. Of these, seven were polymorphic. Nucleotide sequencing showed low variation, with one haplotype dominating in the regions sampled and four other haplotypes, differing by only a single base, occurring at a low frequency. Microsatellites confirmed low levels of diversity, but also showed moderate levels of population structure over local geographic scales, although this structure was not a result of isolation by distance. Over broader geographic scales, cluster analysis showed that populations from all U.S. states and China were almost indistinguishable and population assignment revealed that only 30% of individuals sampled could be correctly assigned to the population from which they were collected. Populations collected from Sorghum bicolor and Sorghum halepense could not be discriminated, indicating that S. halepense may act as a reservoir for the aphid during times when sorghum is not cultivated. The close similarity between individuals from China and the U.S. suggests that the lack of variation in the species may be explained by the parthenogenetic mode of reproduction, where males are seldom found.
References
1. Adhab, M., 2021. Be smart to survive: virus-host relationships in nature. Journal of Microbiology, Biotechnology and Food Sciences, 10(6) e3422-e3422. doi.org/10.15414/jmbfs.3422
2. Aguirre-Rojas, L. M., L. K. Khalaf and C. M. Smith 2019. Barley varieties stoneham and sydney exhibit mild antibiosis and antixenosis resistance to the wheat curl mite, Aceria tosichella (Keifer). Agronomy. 9(11) 748. doi.org/10.3390/agronomy9110748
3. Bell, J. R., and G Shephard, 2024. How aphids fly: take off, free flight and implications for short and long-distance migration. Agricultural and Forest Entomology,1-10. doi.org/10.1111/afe.12623
4. Blackman, R. L., and V. F. Eastop, 2000. Aphids on the world's crops: an identification and information guide 2nd ed. John Wiley and Sons Ltd., Chichester. pp. 375.
5. Blackman, R. L., S. E. Halbert, and T. W. Carroll, 1990. Association between karyotype and host plant in corn leaf aphid (Homoptera: Aphididae) in the northwestern United States. Environmental Entomology 19(3) 609-611. doi.org/10.1093/ee/19.3.609
6. Burd, J. D., and D. R. Porter, 2006. Biotypic diversity in greenbug (Hemiptera: Aphididae): characterizing new virulence and host associations. Journal of Economic Entomology 99(3) 959-965. doi.org/10.1093/jee/99.3.959
7. Clement, M., Q. Snell, P. Walker, D. Posada, and K. Crandall, 2002. TCS: Estimating gene genealogies. Parallel and Distributed Processing Symposium, International Proceedings 2(1) 184. doi.org/10.1109/IPDPS.2002.1016585
8. Csorba, A. B., S. Dinescu, G. G. Pircalabioru, C. G. Fora, J. Bálint, H. D. Loxdale, and A. Balog, 2024. Aphid adaptation in a changing environment through their bacterial endosymbionts: an overview, including a new major cereal pest (Rhopalosiphum maidis (Fitch) scenario. Symbiosis, 93(6)1-14. doi.org/10.6084/m9.figshare.25027973
9. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5) 1792-1797. doi.org/10.1093/nar/gkh340
10. Excoffier, L., H. E. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3) 564-567. doi.org/10.1111/j.17550998.2010.02847.x
11. Folmer O, M. Black W. Hoeh R. Lutz R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech, 1994(3) 294–299
12. Foottit, R. G., H. E. L. Maw, C. D. Von Dohlen, and P. D. N. Hebert, 2008. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Molecular Ecology Resources 8(6) 1189-1201. doi.org/10.1111/j.1755-0998.2008.02297.x
13. Hebert, P. D., A. Cywinska, S. L. Ball, and J. R. DeWaard, 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321. doi.org/10.1098/rspb.2002.2218
14. Hesler, L., and K. Dagel. 2010. Grass hosts of cereal aphids (Hemiptera: Aphididae) between wheat-cropping cycles in South Dakota. The Great Lakes Entomologist 43(1) 1-10. doi.org/10.22543/0090-0222.2205
15. Hörandl, E., J. Bast, A. Brandt, S. Scheu, C. Bleidorn, M. Cordellier, M. Nowrousian, D. Begerow, A. Sturm, K. Verhoeven, and J. Boenigk, 2020. Genome evolution of asexual organisms and the paradox of sex in eukaryotes. Evolutionary Biology-A Transdisciplinary Approach, 133-167. doi.org/10.1007/978-3-030-57246-4_7
16. Khalaf, L. K., M. Adhab, L. M. Aguirre-Rojas and A. E. Timm 2023. Occurrences of wheat curl mite Aceria tosichella Keifer 1969 (Eriophyidae) and the associated viruses, (WSMV, HPWMoV, TriMV) in Iraq. Iraqi Journal of Agricultural Sciences, 54(3): 837-849. doi.org/10.36103/ijas.v54i3.1767
17. Khalaf, L., A. Timm, W. P. Chuang, L. Enders, T. J. Hefley and C. M. Smith 2020. Modeling Aceria tosichella biotype distribution over geographic space and time. Plos one. 15(5):0233507. doi.org/10.1371/journal.pone.0233507
18. Khalaf, L.K., Y. Zhang, and M. Adhab 2023. Grapevine vein-clearing virus is mealybug-borne but not mealybug-transmitted. Iraqi Journal of Agricultural Sciences. 54(5):1469-1477. doi.org/10.36103/ijas.v54i5.1846
19. Kim, H., K. A. Hoelmer, and S. Lee, 2017. Population genetics of the soybean aphid in North America and East Asia: test for introduction between native and introduced populations. Biological Invasions 19(2) 597-614. doi.org/10.1007/s10530-016-1299-7
20. Lee S, J. Holman J. Havelka, 2002. Illustrated Catalogue of Aphididae in the Korean Peninsula Part I, Subfamily Aphidinae. Insects of Korea Series 9. Deajon, Korea: Korea Research Institute of Bioscience and Biotechnology 9, 1-331.
21. Leigh, J. W., D. Bryant, and S. Nakagawa, 2015. Popart: full‐feature software for haplotype network construction. Methods in Ecology and Evolution 6(9) 1110-1116. doi.org/10.1111/2041-210X.12410
22. Lo, N., A. Montagu, A. Noack, H. Nahrung, H. Wei, M. Eldridge, K. A. Gray, H. A. Rose, G. Cassis, R. N. Johnson, and S. Lawson, 2018. Population genetics of the Australian eucalypt pest Thaumastocoris peregrinus: evidence for a recent invasion of Sydney. Journal of Pest Science 92(1) 1-12. doi.org/10.1007/s10340-018-0995-8
23. Lupoli, R., M. E. Irwin, and C. R. Vossbrinck, 1990. A ribosomal DNA probe to distinguish populations of Rhopalosiphum maidis (Homoptera: Aphididae). Annals of Applied Biology 117(1) 3-8. doi.org/10.1111/j.1744-7348.1990.tb04189.x
24. Monti, V., H. D. Loxdale, M. Cesari, M. Frattini, M. Panini, E. Mazzoni, and G. C. Manicardi, 2016. Ecological genetics of Italian peach‐potato aphid (Myzus persicae) populations in relation to geography, dispersal and insecticide resistance as studied using microsatellite and resistance markers. Agricultural and Forest Entomology 18(4) 376-389. doi.org/10.1111/afe.12169
25. Nibouche, S., L. Costet, J. R. Holt, A. Jacobson, A. Pekarcik, J. Sadeyen, J. Armstrong, G. C. Peterson, N. McLaren, and R. F. Medina, 2018. Invasion of sorghum in the Americas by a new sugarcane aphid (Melanaphis sacchari) superclone. PloS one 13(2) e0196124. doi.org/10.1371/journal.pone.0196124
26. Omkar and A. K. Tripathi, 2020. Sucking Pests of Cereals. In: Omkar (eds) Sucking Pests of Crops. Springer, Singapore. doi.org/10.1007/978-981-15-6149-8_1
27. Painter RH and M. D. Pathak, 1960. The distinguishing features and significance of the four biotypes of the corn leaf aphid, Rhopalosiphum maidis (Fitch). International Congress of Entomology Wien, 11(2) 110-115.
28. Peakall R., P. E. Smouse, 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28(2) 2537-2539.
29. Piry, S., A. Alapetite, J. M. Cornuet, D. Paetkau, L. Baudouin, and A. Estoup, 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity 95(6) 536-539. doi.org/10.1093/jhered/esh074
30. Podmore, C., I. D. Hogg, G. M. Drayton, B. I. Barratt, I. A. Scott, R.G. Foottit, D. A. Teulon, and S. R. Bulman, 2018. Study of COI sequences from endemic New Zealand aphids highlights high mitochondrial DNA diversity in Rhopalosiphina (Hemiptera: Aphididae). New Zealand Journal of Zoology, 46(2) 107–123. doi.org/10.1080/03014223.2018.1510843
31. Ratnasingham, S., and P. D. Hebert, 2007. BOLD: The Barcode of Life Data System (http://www. barcodinglife. org). Molecular Ecology Notes 7(3) 355-364.
32. Remaudière G, K. Naumann-Etienne, 1991. Découverte au Pakistan de l’hôte primaire de Rhopalosiphum maidis. (Fitch) (Hom. Aphididae) Comptes Rendus de l’Academie d’Agriculture de France 77(1) 61-62.
33. Rousset, F., 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8(1) 103-106. doi.org/10.1111/j.1471-8286.2007.01931.x
34. Shorthouse, D. P. 2010. SimpleMappr, an online tool to produce publication-quality point maps. [Retrieved from http://www.simplemappr.net. Accessed October 12, 2018].
35. Sial, M. U., T. Farooq, L. K. Khalaf, S. Rahman, M. Asad, and B. A. Paray 2023. Two-step method for rapid isolation of genomic DNA and validation of R81T insecticide resistance mutation in Myzus persicae. Saudi Journal of Biological Sciences, 30(11), p.103791. doi.org/10.1016/j.sjbs.2023.103791
36. Simon, J. C., N. Leterme, F. Delmotte, O. Martin, and A. Estoup, 2001. Isolation and characterization of microsatellite loci in the aphid species, Rhopalosiphum padi. Molecular Ecology Notes, 1(1-2) 4-5. doi.org/10.1046/j.1471-8278.2000.00002.x
37. Simon, J. C., P. D. N. Hebert, C. Carillo, and R. De Melo, 1995. Lack of clonal variation among Canadian populations of the corn leaf aphid, Rhopalosiphum maidis Fitch (Homoptera: Aphididae). The Canadian Entomologist 127, 623-629. doi.org/10.4039/Ent127623-5
38. Takezaki, N., M. Nei, and K. Tamura, 2014. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Molecular Biology and Evolution 31(6) 1622-1624. doi.org/10.1093/molbev/msu093
39. Van Oosterhout, C., W. F. Hutchinson, D. P. Wills, and P. Shipley, 2004. MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes. 4(1)535-538. doi.org/10.1111/j.1471-8286.2004.00684.x
40. Wainwright, C.E., D. R. Reynolds, and A. M. Reynolds, 2020. Linking small-scale flight manoeuvers and density profiles to the vertical movement of insects in the nocturnal stable boundary layer. Scientific Reports, 10(1) 1019. doi.org/10.1038/s41598-020-57779-0
41. Weng, Y., P. Azhaguvel, G. J. Michels Jr, and J. C. Rudd, 2007. Cross‐species transferability of microsatellite markers from six aphid (Hemiptera: Aphididae) species and their use for evaluating biotypic diversity in two cereal aphids. Insect Molecular Biology. 16(1) 613-622.
doi.org/10.1111/j.1365-2583.2007.00757.x
42. Wilson, A. C., B. Massonnet, J. C. Simon, N. Prunier‐Leterme, L. Dolatti, K. S. Llewellyn, and P. Sunnucks, 2004. Cross‐species amplification of microsatellite loci in aphids: assessment and application. Molecular Ecology Notes. 4(1) 104-109. doi.org/10.1046/j.1471-8286.2004.00584.x
43. Yadav, J., P. Jasrotia, M. S. Jaglan, S. Sareen, P. L. Kashyap, S. Kumar, S. S. Yadav, G. Singh, and G. P. Singh, 2024. Unravelling the novel genetic diversity and marker-trait associations of corn leaf aphid resistance in wheat using microsatellite markers. Plos one, 19(2) p.e0289527. doi.org/10.1371/journal.pone.0289527
Downloads
Published
Issue
Section
License
Copyright (c) 2025 IRAQI JOURNAL OF AGRICULTURAL SCIENCES

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.